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Abstract

This work focuses on the use of 3D motion capture data to create and optimize a robotic
human body model (RHBM) to predict the inverse kinematics of the upper body. The
RHBM is a 25 degrees of freedom (DoFs) upper body model with subject specific
kinematic parameters. The model was developed to predict the inverse kinematics of the
upper body in the simulation of a virtual person, including persons with functional
limitations such as a transradial or transhumeral amputation. Motion data were collected
from 14 subjects: 10 non-amputees control subjects, 1 person with a transradial
amputation, and 3 persons with a transhumeral amputation, in the University of South

Florida’s (USF) motion analysis laboratory.

Motion capture for each subject consisted of the repetition of a series of range of motion
(RoM) tasks and activities of daily living (ADLs), which were recorded using an eight
camera Vicon (Oxford, UK) motion analysis system. The control subjects were also
asked to repeat the motions while wearing a brace on their dominant arm. The RoM tasks
consisted of elbow flexion & extension, forearm pronation & supination, shoulder flexion
& extension, shoulder abduction & adduction, shoulder rotation, torso flexion &
extension, torso lateral flexion, and torso rotation. The ADLSs evaluated were brushing
one’s hair, drinking from a cup, eating with a knife and fork, lifting a laundry basket, and
opening a door. The impact of bracing and prosthetic devices on the subjects’ RoM, and

their motion during ADLs was analyzed.
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The segment geometries of the subjects’ upper body were extracted directly from the
motion analysis data using a functional joint center method. With this method there are
no conventional or segment length differences between recorded data segments and the
RHBM. This ensures the accuracy of the RHBM when reconstructing a recorded task, as
the model has the same geometry as the recorded data. A detailed investigation of the
weighted least norm, probability density gradient projection method, artificial neural
networks was performed to optimize the redundancy RHBM inverse kinematics. The
selected control algorithm consisted of a combination of the weighted least norm method
and the gradient projection of the null space, minimizing the inverse of the probability
density function. This method increases the accuracy of the RHBM while being suitable

for a wide range of tasks and observing the required subject constraint inputs.
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Chapter 1: Introduction

The objective of this study was to develop the RHBM into a kinematically accurate
model of the upper body, with the ability to predict the subjects’ pose during activities of
daily living. The RHBM must also be suitable for use in simulating the motion of persons
with limited functional capabilities, specifically persons with transhumeral or transradial
amputations. This model can then be used in a simulation of prostheses performance to
prospectively determine patient outcomes, evaluate the performance of different devices,
design new prosthetic devices, and better train patients to use their prostheses. To
facilitate this work the following research objectives were identified:
1. Evaluation of the range of motion and task performance of persons wearing
braces and amputees using prosthetic devices.
2. Creation of database of subject upper body poses during activities of daily living.
3. Development of subject specific parameters to create a highly accurate model of
the upper body.
4. Development and investigation of a variety of inverse kinematic control
algorithms, and their application in the field of human motion prediction.
By modeling the upper body and applying that model to the field of prosthetics the
performance of devices can be quantitatively and objectively measured. Quantitative
measures of prosthesis performance will help the prescription, evaluation, design, and
training associated with these devices. Improvement in each of these areas would lead to

more independence and a better quality of life for prosthesis users.
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1.1 Performance Measures for Modern Prostheses

In prosthetic research there is currently a gap in the ability to predict the prospective
outcome of an amputee’s ability to become fully proficient with and regularly use a
prosthetic device. Additionally, rejection and non-wear rates of upper extremity
prostheses are high, as shown in Table 1, and there is need for further study to determine
the “comprehensive understanding of the factors affecting prosthesis use and
abandonment” [1]. Recent review of prosthetic outcomes measures [2, 3] found that of
the existing measures the Assessment of Capacity for Myoelectric Control (ACMC) [4],
the Orthotics and Prosthetics Users’ Survey (OPUS) [5], and the Trinity Amputation and
Prosthesis Experience Scales (TAPES) [6], were recommended when measuring
outcomes of an adult amputee population. These tools will help to evaluate the efficacy
of prosthetic devices; however incorporation of simulation can lead to better prediction
and optimization of prosthetics outcomes and can be quickly applied to clinical
knowledge.

Table 1: Upper extremity prosthesis rejection rates for adults, reproduced from [1]
# of Studies Mean (%) Range (%) S.D. (%)

Passive 1 38 -
Body-Powered 3 45 36-66 17

Electric 12 32 12-75 19
No Prosthesis 7 16 6-34 11

Currently a wide body of literature exists on tracking and modeling the human body [7-
14]. The development of tools for simulating the efficacy of prosthetic devices can be
achieved using techniques developed for robotics and biomechanics [15-17]. This work
seeks to contribute to that body of knowledge by developing an upper body model
suitable for predicting patient outcomes through simulation, to improve the efficacy of

upper extremity prostheses. The implementation of the RHBM into simulation software

2
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will be completed as part of the ongoing research project “Development of a Simulation
Tool for Upper Extremity Prostheses” at the University of South Florida funded by the
U.S. Army Medical Research & Materiel Command (USAMRMC) and the Telemedicine
& Advanced Technology Research Center (TATRC). This simulation will be used to
evaluate the efficacy of different devices based on predictions of a subject’s task
performance relative to healthy persons without an amputation. This information can then
be used to assist in the determination of which prosthesis is best for a particular
individual (prescription), which prosthesis is optimal for specific tasks (evaluation),
determine the efficacy of potential prosthetic components and capabilities (design), and

effective strategies for prosthesis use (training).

1.2 Epidemiology and Need

Of the estimated 1.6 million persons with amputation in the United States in 2005, 35%
are living with loss or deficiency of the upper extremity [18]. The number of amputees is
expected to increase to 2.2 million by 2020. According to data from the Joint Theater
Trauma Registry and Military Amputee Research program, there have been 423 service
members who have suffered one or more major limb amputation in the period between
October 2001 and June 2006. Of those, 105 have had an upper extremity amputation “at
or proximal to the wrist” [19]. A 2010 article cited that more than 950 soldiers have
sustained combat-related amputation during the current conflicts [20]. In 1993 Silcox
reported prosthesis rejection rates for upper extremity myoelectric prostheses of up to
50% and that only about 25% would rate themselves as excellent prosthesis users [21].
Due to the wide variety of prosthetic types, amputation levels, and user preferences,

reported use and abandonment vary widely [1]. Richard Sherman studied traumatic
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amputees in the VA and found that 22% said the prosthesis was “not useful for anything”
and only 32% reported the prosthesis was up to half as effective as the original limb [22],
although the rates for the upper limb specifically were not identified. In addition to those
that reject the use of a prosthetic device, there is a group that chooses to wear the device
but only use it passively [1]. Upper limb amputees are also less likely to use a prosthesis
than lower-limb amputees [23]. A 2007 survey of prosthesis users in Sweden and the UK
found high levels of satisfaction from users of upper limb cosmetic and electric
prostheses, but did not account for non-users [24]. An online survey found that users with
a myoelectric prosthetic hand use their prosthesis more for work than recreation, but
generally reported high levels of use [25]. Clearly, while improvements are being made
in use and satisfaction with prosthetic devices, the current generation of powered upper
limb prostheses is not serving the population as effectively as possible. Emerging
prosthetic devices offer increased capabilities, but are also increasingly complex, and the
costs of these devices are increasing exponentially. Methods for maximizing the
capabilities of devices, and determining the advantages and the disadvantages of
additional components, will become increasingly important to ensure the efficacy of these
devices. Increased efficacy in the development, prescription, and utilization of new
devices will lead to greater patient satisfaction and renewed desire for continued

development.

It has been shown that a variety of different solutions are required for individuals with
upper extremity amputations depending on their perceptions and goals [26]. The role of
the amputee in selecting the device and the timeliness of delivery are significant factors

in prosthesis acceptance [1]. Even a small change in the artificial limb can have
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significant impact on the overall body movements, [27] and ultimately lead to a reduction
in the rate of use of the intact arm and body, possibly reducing overuse injuries. Limited
function of upper limb prostheses may cause awkward aberrant movements not normally
experienced by non-amputees, called compensatory motion [28, 29]. These aberrant
motions have been cited as one of the factors influencing the discontinuation of prosthetic
use [21]. Quantification and predictions of compensatory motions can help assess design
changes and patient-training methods for the upper limb prosthesis in a functional
context. Quantifying the underlying aspects of prosthesis performance can also lead to

significant improvement in prosthesis selection and design.

1.3 Current Upper Limb Prescription Techniques

Contemporary prescription and selection of components for upper extremity prostheses
have limited objective quantitative aspects. Prescription of prostheses commonly relies
on the qualitative knowledge and experience of the prosthetist. For instance, if a person
with an upper extremity amputation has extensive periscapular muscular impairment
coupled with severe postural defects, then limited range of motion would suggest that a
body-powered shoulder harness prosthesis would be a poor option. Similarly, prescription
of a two site myoelectric prosthesis with co-contraction switching for a patient who is
unable to activate the radial nerve distal to the elbow would likely be viewed as over-
prescription, as their ability to properly control the device would likely be limited. The
latter example has further implications in terms of surgical decisions regarding limb
length. Battlefield surgical decisions for residual limb length may at times include
component considerations without knowledge of potential patient satisfaction and

function, which could potentially lead to future device abandonment. Abandonment in
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this particular case may be due to the patient’s perception of a poor functioning
prosthesis. However, this may not be an issue of poor prosthetic function, but rather one

of an inappropriate prosthetic prescription.

Current prosthetic prescription practices are based largely on a practitioner’s clinical
experience and their experience with commercially available components. The
commercial sector impact from manufacturer marketing likely influences component
prescription. This is plausible because prosthetists’ perceptions of component function
may be based on marketing claims. Implementation of this research could help
prosthetists validate the function of devices from the commercial sector and develop
opinions of performance independent of the component’s marketing information. Upper
limb prostheses are generally subdivided and selected from the following major
categories; no prosthesis, passive, body-powered, externally powered, hybrid, or activity

specific [30]:

1.3.1 No Prosthesis

Patients who feel that the prosthesis impairs function, does not provide sufficient
function, or lacks cosmetic appeal are likely to not use a prosthesis. Additionally patients
may not use a prosthesis if they lack the motor skills or cognitive ability to do so, or if the
use of the device presents a risk of injury. Many users will choose not to use a prosthesis
during specific activities such as: sleeping, bathing, or even recreational or work
activities for which their prosthesis is not useful. While choosing to not use a prosthesis
provides no additional functionally to the residual limb it also allows the full range of
motion of the proximal joints, which patients may be able to utilize for functional

performance.
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1.3.2 Passive Function

Cosmetic and passive devices are often considered when pre-posing the terminal device
is sufficient, or if psychosocial domains may benefit by restoring shoulder and extremity
symmetry. They are also considered if the visibility of a high quality cosmetically
replicated hand increases satisfaction, and social/societal reintegration. Passive devices
do not offer additional active DoFs, however they can be used to extend the residual limb
and act as support when performing tasks. Poseable passive devices, ones with inactive
DoFs, may also be used to carry or hold objects. Passive devices may be desirable in

tasks that require high levels of stability.

Figure 1: Hosmer silicon gloves

1.3.3 Body-Powered Prostheses

Body-powered prostheses are most commonly cable driven and generally require
moderate scapular and shoulder muscle force production coupled with considerable
scapular and humeral excursion. These prostheses should be considered if an individual’s
functional tasks create situations that are potentially damaging to the electronics
associated with externally powered componentry such as vocation and recreation in
oceanic environments, welding, and others. Most body-powered devices offer an active
elbow and/or end effector, often used in combination with a hook. Passive joints for

rotation of the end effector can also be included in the prosthesis.
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Figure 2: Hosmer body-powered hook and elbow.

1.3.4 Externally Powered Systems

Incorporating external power commonly requires myoelectric signaling. Therefore a
minimal amount of peripheral nerve activation is required in order to operate even the
most simplistic (e.g. single channel “cookie crusher”) myoelectric prostheses. The
increased control capability of the user (i.e. co-contraction, isolation, proportional
control, etc.) enables a greater number of DoFs and separate functions that are available
for the user. Nerve function, fatigue, added mass, battery life, maintenance, cost,
compliance with instruction, environmental conditions, and gadget tolerance are also
commonly considered. Externally powered systems have the most versatile range of
available DoF, components exist to mimic almost all anatomical joints. Recent advances
in robotic prosthetics have led to prosthetic arms with nearly the same capabilities of an
anatomical arm. However, the mechanisms for control of these devices have not matured

and traditional myoelectric control often only allows for a few control sites.

Figure 3: Diagram of Utah 3 prosthetic arm
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1.3.5 Hybrid Systems

Hybrid systems offer combined control strategies and functions from both body-powered
and externally powered systems. This is considered when maximal function is not
attainable from a single activation system alone, often because of a patient’s unique
dysfunction and residual anatomy. Hybrid prostheses may combine passive, body-
powered, and externally powered components to offer a device specific to the needs of an
individual. This level of components selection is one of the potential areas of application

for the prosthesis simulation tool.

1.3.6 Activity Specific

Activity specific prostheses are designed for performing a single specific task. They are
commonly used in recreational settings but may also be used in occupational or other
settings. Making a prosthesis activity specific may be as simple as exchanging an all-
purpose terminal device for a highly specialized single task terminal device. Examples
include terminal devices specific for: eating, hygiene, gardening, weightlifting, kayaking

and more [28].

As observed above, the background structure for clinical device selection is largely based
on subjective experience instead of guidelines or algorithms based on scientific evidence.
Once one of the aforementioned general categories of prostheses has been prescribed,
there is little data to confirm the success of the prescription. The successful prescription
of a prosthesis should be confirmed by objective outcome measures such as higher
function, increased satisfaction, decreased compensatory movement, decreased prosthetic
abandonment rates, and decreased secondary complications (i.e. overuse syndromes) in

the long term. Work is currently being done on the development of upper limb prosthetic

9

www.manaraa.com



outcomes and standardization of outcome measures [2]. A paradigm for clinical decision
making for orthoses has been developed [31]. A prescription criterion for lower limb
prostheses is often based on Medicare Functional Classification Level, or other insurance
guidelines. However, comparative analysis of lower limb function and outcomes for
prosthetic knees have been explored [32, 33], but little is currently known about the

prescription success and function of upper limb prostheses.

By developing a system to test the functional capacity of subjects fitted with a variety of
components the simulation tool for upper extremity prosthesis will evaluate the impact of
a variety of prosthetic components, by translating the components into kinematic
parameters that the RHBM can then use to predict subject performance. The desired
effect of which will give prosthetist an objective measure of predicted patient outcomes
that they can use in conjunction with their professional experience to maximize the

compatibility of patients and the prescribed devices.

1.4 Human Body Modeling

Quantitatively analyzing the performance of prosthetic devices starts with the creation of
a model of the human body. Many models have been used in the recent development of
lower limb prostheses and orthoses. A dynamic musculoskeletal model was used to
predict gait in rehabilitation [34]. A simple two-dimensional model has been used to
predict the effect of ankle joint misalignment on calf band movement in ankle-foot
orthoses. This model was able to predict these effects for a range of ankle angles without
human testing [35]. Crabtree et al. developed a tunable ankle-foot orthosis model to
predict torque from ankle angle and velocity and to identify plausible changes in muscle

excitation and function in a walking simulation [36]. A spring-mass model has been used
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in conjunction with a symmetry index to observe the effect of varying prosthetic height
and stiffness on running biomechanics [37]. This method of using a model and symmetry
index is a tool that evaluates the effects of changes in lower limb prosthetic prescriptions.
A model has also been used to predict the effects of variations in prosthetic sagittal-plane
alignment, mass distribution and foot selection [38]. While modeling has been very
successful in lower limb prosthetics, there have not been as many attempts to apply
similar methods to the upper limb. This is likely due to the increased complexity of the
upper limb, relative to the lower limb, which requires complex modeling techniques and

control methods.

Although upper body models have been rarely used in the field of prosthetics, the
development of a human body model that behaves like a person has been studied in a
wide variety of fields, from computer graphics [39] to rehabilitation [40]. These models
differ greatly in their degree of complexity and configuration depending on their scope
and application. Maurel developed a 3D kinematic and dynamic model of the upper body
and detailed the scapular thoracic joint, modeling the scapula position as being
constrained by a series of points on a surface approximating the thorax [41]. These
constraints led to a biomechanically accurate depiction of scapular movement, but are
difficult to decompose into a series of single DoF joints. De Groot and Brand developed a
regression for predicting scapular movement based on the angle of the humerus relative
to the torso [13], which has been used in biomechanical simulation by Holzbaur [42].
This reduces the complexity of their upper body simulation. However, in the prosthetic
population, as well as other populations with dysfunction of the upper extremity, scapular

movement is an important control and compensation strategy and should not be coupled
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to humeral motion. Most human body models simplify anatomical joints into a
combination of single DoF revolute and prismatic joints that are commonly used to
represent serial robotic manipulators [15-17, 43-45], which increases the ease of applying
robotics based control algorithms. For instance, the shoulder is often simplified as three
revolute joints that have intersecting orthogonal axes. More detailed models are often
used in biomechanics to simulate muscle action, and have articulations that resemble
anatomical movement with greater accuracy, but these models require detailed
knowledge of the path of the motion or the individual muscle forces [12, 46-48], and
therefore are not useful for prediction. Most models of the upper body have some degree
of redundancy, and use various methods to optimize their pose; however the level of
redundancy is usually low. The use of an upper body model to predict human movements
has been studied by Abdel-Malek et al. [43], but focused on predicting the path of the
arm given a number of waypoints. The variety of models of the upper body leads to
confusion about different conventions and joint configurations. The International Society
of Biomechanics has attempted to generate standard conventions [8], and the SIMM [48]
and openSIM.tk [47] projects have been adopted by a number of biomechanics
researchers and have led to somewhat standardized practices, however there is yet to be

an established gold standard.

Study of the upper limb, when movement of the torso and scapular are excluded, has
been much more extensive [40, 44, 49-53] than study of the upper body. Upper limb
models typically have up to seven DoF, and are generally considered grounded to the
shoulder (glenohumeral joint center) [51]. Upper limb models for the analysis of task

performance and development of prostheses were developed by Troncossi [45], but the
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model was not verified with recorded data. An example of design methodology for the
determination of the optimal prosthesis architecture for a unilateral shoulder
disarticulation amputee was applied [44]. Another common solution to the upper limb
inverse kinematic problem is to resolve the redundancy by adding a constraint to the
model reducing the 7 DoF model to a 6 DoF model, this allows for a purely analytical
solution of the 7 DoF arm. This has been done by optimizing the ‘swivel angle’ of the
elbow [52], and by minimizing the upper arm elevation [53]. The limitation of most of
these models is that they do not predict the motion of the entire upper body. Therefore
they are not well suited for use in prediction of task performance when the torso and

shoulder complex are likely to contribute to user motion.

Coupling modeling with motion analysis enables the verification and optimization of the
model results. There are many methods and programs for tracking human motion [50, 54-
57], and many for modeling human motion as discussed above. To ensure accurate results
the motion analysis and modeling conventions must be closely linked. In this study the
use of functional joint centers [58, 59], and a robotic as well as clinical joint angle

convention, ensure compatibility between motion analysis and the RHBM.

1.5 Functional Joint Center Modeling

The analysis of human upper body kinematics is complicated by its large number of
joints, and its range of movement. Complex biomechanical analysis of the human body
relies on detailed geometric and musculoskeletal modeling, similar to the work of Lee et
al. [46]. However, in modeling the human upper body for analysis in interactive and real
time simulation, like those developed by Hauschild et al. [60], or while recording upper

body or whole body motions, it is often necessary to limit the number and complexity of
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joints used to model the human body. In these cases, simplifications of complex joint
structures are often made. Segments are often assumed to be rigid, and have joint centers
with fixed position in the coordinate systems of the proximal segment [61]. Commonly
used motion analysis techniques, such as the Vicon Plug-in Gait [54], rely on the
regression of joint centers based on approximated distances from anatomical landmarks.
These regressive methods often use mean anthropometric measurements, such as those
provided by Drills [62] or Winter [63], in combination with subject anthropometric
measurements taken manually by a researcher to approximate joint center locations.
These locations are subject to error from subject measurements, marker placement, and
variations in subject skeletal geometry. They can also be difficult to validate and compare

with other models.

Functional methods, [59] those relying on the path data from motion analysis of a subject
for determining the location of joints within a system, have several advantages over
traditional regressive methods. A functional joint center is the center of rotation of a body
in space relative to another body. In the case that the bodies are only rotating relative to
each other, this is also the position on the reference body where the distance from any
point on the rotating body remains constant, as shown in Figure 4. The primary
advantages of functional joint center methods are that they do not rely on pre-existing
knowledge of a body’s anthropometry, and markers can be placed anywhere on a rigid
segment. Marker artifacts and skin movement will decrease the accuracy of the functional
joint center calculation, but only in relation to the rest of the movement. If the volitional
movement is much larger than the noise, the skin movement, and the other sources of

error, the impact on the functional joint center location will be minimal. Whereas noise
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and other sources of error will translate directly into movement and/or rotation of the
segment in regressive models, such as the Plug-in Gait. Functional methods are therefore
less susceptible to measurement error, marker placement error, and deviation in subject’s
relative limb lengths.
Path

Final Marker @ Initial Marker
Position Position

Velocity 1

Positionl
Velocity 2

Distance Functional

Functional
XS Joint Center

Joint Center

Figure 4: Ideal functional joint centers circle fit method (left), and instant center of
rotation (right)

However, since the human body is not constructed of ideal hinges, no position exists on a
segment of the upper body that will remain at a truly constant distance relative to all
points on a distal or proximal segment. Therefore, it is necessary to find the position
where the distance is nearly constant, and a sufficient amount of movement is required to
discriminate relative segment motion from sources of error such as noise, segment
deformation, and others. Several methods have been developed to predict a joint’s center
given a set of recorded position data. A least squares method has been developed [64],
which provides computationally efficient solutions. An optimization algorithm for
finding the joint center of the hip was developed [56]. A generalized gradient based
optimization was also developed for automatic skeleton generation from motion analysis
data [58]. These methods were tested for accuracy and noise tolerance, and the

generalized gradient based optimization was selected for use with the RHBM.
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1.6 Robotic Optimization Techniques for Modeling

The use of robotic methods to model the human body has been applied for various
purposes, including 3D graphics, human engineering, biomechanics, and others. Robotic
methods generally refer to the decomposition of a kinematic system into a series of single
DoF joints, that can be used to calculate the forward and inverse kinematics of a system.
For instance in Figure 5, a two DoF manipulator is presented. The forward kinematic
equation, fkine, calculates the position of the end of the manipulator as a function of its
joint angles, 61 and 6,. The inverse kinematic equation is the opposite if the forward
kinematics where the joint angles are a function of the Cartesian position of the end of the

manipulator, x and y.

P(x,y) = fkine(84,0,)

0(64,0,) = ikine(x,y)

> X
Figure 5: A two DoF robotic manipulator

Despite a great deal of research, the methodology of human movement has remained
elusive. This is partially due to the fact that the human upper body is highly redundant.
Redundancy is when the number of joints exceeds the number of controlled coordinates
in the workspace, and the conventional inverse kinematics for a close-form solution is no
longer applicable. The process of solving the redundancy of human poses remains a
prominent topic of research. The use of the Jacobian, a mapping between joint angle and
end effector velocity, for inverse kinematic control of redundant manipulators has been
well studied [65-68], and the weighted least norm solution has been used in simulating
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movement of the human upper body [15-17]. Additionally, Guez and Ahmad have shown
that neural networks can be used in inverse kinematics problems for redundant robotics
[69], and Kiguchi and Quan have used a fuzzy neural network for controlling an upper

limb power assist exoskeleton [70].

The use of robotic methods to describe upper body kinematics was developed to facilitate
the use of various control algorithms from robotics literature for the RHBM. The robotics
literature contains many methods for controlling serial manipulators. Since the ideal
control methodology was unknown, a wide variety of methods were considered. When
controlling a robotic device, it is essential to compare the workspace capability of the
robot and the task space required in operation. In general, a minimum of six DoFs are
required in a robot in order to accomplish total manipulation control of objects in the
workspace. Each side of the upper body model in the RHBM has 14 DoFs. Redundancy
resolution and optimization has been the subject of a great deal of research, where the use
of the extra joints is employed to execute additional tasks and optimize the motion based
on certain performance criteria. Yang et al. developed a framework for multivariable
optimization of a human model [71], where they minimized functions for joint
displacement, changes in potential energy, and discomfort. However they did not use
recorded data to optimize their cost equations for the reproduction of recorded motion, or

test the realism of their generated poses.

In the RHBM, the redundancy of the model was used to minimize the difference between
the model’s predicted motion and the motion analysis data of persons performing ADLSs.
In this project several methods for optimizing the redundancy were tested. Control

methods were divided into three categories for analysis. Jacobian based methods
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compose the first category, of which the weighted least norm and null space projection
methods were considered. Neural network based methods compose the second category,
of which there are a wide variety of potential inputs and outputs. Finally the last category
consists of probability based methods, primarily Gaussian processes, which provide a
mapping between data sets. The final method developed was a combination of the
weighted least norm solution with a null-space correction based on the gradient of
probability density of the joint angles to predict joint movements that are preferable to

human subjects.

1.6.1 Jacobian Based Control Algorithms

This section reviews several of the Jacobian based methods for controlling and
optimizing redundancy that were explored during this study. These methods are generally
extensions and applications of optimization of redundancy using Jacobian methods as
outlined by Nakamura [67]. The Jacobian describes the mapping between joint angle
velocity and end effector velocity and can be used to find methods for inverse kinematics

and dynamics.

Chang [65] proposed a closed-form solution for inverse kinematics of redundant
manipulators using the Lagrange multiplier method. He proposed an additional set of
equations to resolve the redundancy at the inverse kinematic level in such a way that a
given criteria function may be minimized or maximized. The additional equations were
set in a similar way to the homogeneous solution term of the resolved rate method, which
uses the null space to resolve the redundancy. He used the manipulability index [72] as
the criteria function, but any criteria function can be used as long as the function can be

reduced to an expression in terms of joint variables only.
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Khadem et al. [66] used a global optimization scheme to avoid round obstacles using the
resolved rate method and the null space of the Jacobian. Their simulation of a three-
revolute-joint planar robotic arm has shown good performance in following a path while

the specified robot link was avoiding a specified obstacle throughout the simulation.

Chan et al. [73] proposed a new method to resolve the redundancy and optimize for joint
limit avoidance. They were able to control a 7-DoF robotic arm using a symmetric
positive definite weight matrix that carries different weights for each joint of the
redundant robot included in the least-norm solution. The weighted-least norm solution
was implemented, and was able to reach the goal with the specified trajectory accurately
and avoid the joint limits of the robotic arm. McGhee et al. [74] later used the weight
matrix to avoid joint limits, singularities, and obstacles using the probability-based

weighting of the performance criteria.

Beiner et al. [75] improved the velocity norms and the kinetic energy of their planar 3-
DoF robotic crane with hydraulic actuators by using an improved pseudoinverse solution
control scheme based on the weighted least norm methods. They used the initial
manipulator configuration as an optimization parameter, and were able to reduce the
actuator velocities obtained by a pseudoinverse solution and simultaneously avoid the

actuators limits.

Zergeroglu et al. [76] designed a model-based nonlinear controller that achieved
exponential link position and subtask tracking. Their control strategy used the
pseudoinverse of the manipulator Jacobian and did not require the computation of the

positional inverse kinematics. Their control strategy did not place any restriction on the
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self-motion of the manipulator, and hence, the extra DoFs were available for their

manipulability maximization, obstacle avoidance, and joint limits subtasks.

Kwon et al. [77] introduced a new method to optimize and resolve redundancy
considering joint-limit constraint functions. Their dual quadratically constrained
quadratic programming (QCQP) method used quadratic inequality constraints to
approximate linear inequality constraints to represent joint position, velocity and torque
bounds using the null space of the Jacobian. They were able to reduce the size of the
problem by reducing the number of constraints and variables. They formulated the
quadratic objective function and then converted the problem into two problems by
eliminating linear equality constraints and by applying the duality theory. This method
was used in their simulation of a 4-joint planar robotic arm, and they were able to reduce

the computation time to about a tenth of that when the problem was not reduced.

Ellekilde et al. [78] created a new scheme for controlling robots in visual servoing
applications. They employed quadratic optimization techniques to solve the inverse
kinematics problem and explicitly handle both joint position, velocity and acceleration
limits by incorporating these as constraints in the optimization process. Contrary to other
techniques that use the redundant DoF to avoid joint limits, in their method they
incorporated the dynamic properties of the manipulator directly into the control system to
use redundancy to avoid joint velocity and acceleration limits. They used the joint
position limits, velocity limits and acceleration limits by converting them into the
velocity domain and chose the case of these limits that satisfied other limits as well for
every time step within optimization function. The algorithm was tested by having a robot

track a car that moved in a circle in the playing area. The quadratic programming control
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system was robust with respect to singularities which enables the robot to track the car as

“good as possible” even when it was out of reach.

The weighted least norm and gradient projection methods were combined to control a
wheelchair mounted robotic arm [79]. This allows for the simultaneous control of the
drive system and the robotic arm while optimizing for ADLs and overcoming workspace
limitations. These methods can also be used to optimize the path of the wheelchair

separately from the path of the end effector [80].

1.6.2 Neural Network Based Control Algorithms

An artificial neural network (NN) is a series of many simple functions that can be used to
approximate a complex function. Networks are divided into layers with an input layer and
output layer, and at least one hidden layer. The weighted sum of the previous layer
becomes the input to one of the functions of the hidden layer. Typically the same function
is used throughout a layer, referred to as the transfer function. The parameters of each
equation of the functions within the network, called neurons, are tuned to optimize the
performance of the network given a set of training data.

Input Hidden Output
Layer Layer Layer

Figure 6: Example NN with one hidden layer.

Guez and Ahmad proposed to find a solution to robotic inverse kinematics using a neural

network [69]. They found that the neural network produced adequate results and was
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computationally efficient after training. Guez also notes that neural networks can be used
to find solutions to inverse kinematics problems with no closed form solutions, including
those of redundant manipulators. Josin et al. proposed the addition of a neural network to
compensate for errors in an existing control algorithm by training the neural network with
desired end effector positions and controller angle output, relative to the true angles

required to achieve the desired positions [81].

Xia et al. have developed a parallel one layer neural network that they call the dual neural
network, for the inverse kinematic control of redundant manipulators [82]. They have
also further expanded this method to observe joint angle and velocity limits while
minimizing complexity without needing to perform matrix inversion [83]. This method
provides a computationally efficient and robust solution to the inverse kinematic equation

that is also stable in all configurations.

In upper body research Kiguchi et al. have used a neuro-fuzzy network to optimize the
weights of a weighted Jacobian torque controller for a robotic upper limb exoskeleton
[70]. Kundu et al. have used a neural network to classify upper limb ADLs [84]. This
method help the device to determine the user’s intentions to determine the force the

exoskeleton should apply to assist the user.

Inohira and Yokoi developed a neural network control of a prosthesis for bimanual
manipulation tasks, solving for joint velocity of the prosthesis given the position of the
contralateral arm and of the prostheses [85]. Ramirez-Garcia et al. used a neural network
to control an upper arm prosthetic device by mapping desired joint angles to actuator

lengths [86]. In these works the neural networks directly control the prosthetic device.
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1.6.3 Probability Based Control Algorithms

Rasmussen and Williams [87] detail the advantages of Gaussian processes for machine
learning. This is a somewhat newer methodology in the field of robotics and motion
simulation but has been rapidly adopted. Gaussian processes can be used to create generic
mappings between correlated variables, for instance; mapping of joint positions,
velocities, and accelerations of a robotic arm to torques, and then using that mapping to

calculate the torques required to move along a specified path.

Lee et al. [88] developed an algorithm for interactive control of avatars moving through a
variety of terrains. They used principle component analysis to reduce the complexity of
the motion in joint space, and a Markov chain to control the transitions between motions
based on collected motion analysis data. Transitions between activities were then blended

to ensure smooth movement.

Wei et al. [89] developed a physically constrained human model for animation. The
model was developed using a Gaussian process to find a force vector field. This allowed
for the addition of constraints in the force domain, and ensures the validity of the model
when different segment masses were adapted. The techniques were then demonstrated by
showing the model results when: walking with a heavy foot, running with forward

resistance, walking on a slippery surface, and walking in a low gravity environment.

1.7 Previous Work by the Author in Upper Body Simulation
Although this study was built from the ground up, it was not the first attempt to make an
upper body simulation for use in the evaluation of upper limb prostheses. In previous

studies [15-17], the movement of the upper body while performing the tasks of opening a

23

www.manaraa.com



door, drinking from a cup, turning a steering wheel, and lifting a box were evaluated
using a 15 DoF robotic model. By applying various constraints to the model, it was
shown that compensatory motions could be simulated in a virtual environment for
unilateral [17] and bilateral [16] tasks. Work was also done to compare the simulated
results to recorded trials [15]. This study was completed in Matlab and utilized the

robotics toolkit developed by Peter Corke.

1.7.1 Brief Detail of Previous Methods

Previous development of an upper body simulation was completed in Matlab using the
robotics toolkit [90]. Control over the range of motion of the model was performed by the
use of a weighted inverse kinematic method, where the function of each joint can be
controlled by a weighting parameter. Tasks were defined by the use of discrete end-
effector positions and orientations along a path to form the desired motion. The 15 DoF
model included the movements described in Table 2.

Table 2: Motions of the 15 DoF upper limb model [15-17]

Joint Description
J1 Translation of the hip joint in the Z direction
J2 Translation of the hip joint in the Y direction
J3 Translation of the hip joint in the X direction
J4 Torso Bending Backward (+) / Forward (-)
J5 Torso Sideways Bending Right (+) / Left (-)
J6 Torso Rotation Left (+) / Right (-)
J7 Shoulder Complex Retraction (+) / Protraction (-)
J8 Shoulder Complex Depression (+) / Elevation (-)
J9 Upper Arm Adduction (+) / Abduction (-)
J10 Upper Arm Extension (+) / Flexion (-)
J11 Upper Arm Medial Rotation Inward (+)/Outward (-)
J12 Elbow Extension (+) / Flexion (-)
J13 Forearm Pronation (+) / Supination (-)
J14 Wrist Flexion (+) / Extension (-)
J15 Wrist Adduction (+) / Abduction (-)
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Three configurations of the model were tested: an anatomical configuration, with all of
the joints intact; a prosthesis with wrist rotation configuration where joints J14 and J15
were restricted from movement; and a prosthesis configuration where J13, J14, and J15

were restricted from movement.

1.7.2 Previous Results

The accuracy of the previous study was evaluated using joint angles calculated using
Vicon Plug-In Gait and was found to have an average joint error of 7.35° and 5.22° for
the right and left arm respectively when reconstructing control subject motion with task
based weighted least norm control and no joint limit constraints. Implementation of the
previous model was able to simulate the compensations of the upper body but resulted in
over-exaggerated motions. While the model was able to predict compensatory motion the
results were considered unrealistic. It was determined that to develop a clinically
acceptable predictive model a large scale detailed analysis of upper body motion, and

investigation of various control and constraint algorithms would need to be performed.

1.7.3 Limitations of Previous Study

Some of the following limitations were considered to be less significant, and were not
addressed in this study. All segments were considered rigid bodies. This approximation
was made because the relative motion of the joints with respect to deformation in the
segment lengths was very large. Anatomical joints were approximated by constant
centers of rotation, and segments with a large number of articulations were reduced into
generalized movements with approximated joint centers. The functional joint centers
have shown high accuracy when modeling the motions of the spine and shoulder

complex, and the motions of the anatomical joints within these complexes are highly
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coupled for most movement. Limitations of the previous studies [15-17], that are

addressed in this study are given in Table 3.

Table 3: Limitations of previous studies and solutions

Limitation

Solution

A Limited number of tasks were
analyzed.

Some anatomical features were
omitted; the model excluded the
carrying angle of the elbow, and
did not include any motions of the
head.

Each task was tested with only one
gripping angle (the angle of the
hand relative to the object being
grasped). Changing the gripping
angle will change the resulting
compensatory motion.

Each task was only performed with
one trajectory; there are an infinite
number of trajectories that can
perform a similar task. Carey et al.
[29] have shown that the trajectory
used by a person with prosthesis
varies from that of non-prosthesis
users.

Joint limit functions were omitted
based on results from simulated
tasks due to the decreased
correlation between recorded and
simulated trials.

No functions for collision
avoidance were developed or
tested.

The weighting factors for each task
were determined by trial and error.

Additional tasks were analyzed. The interface will
help facilitate the addition of future tasks.
Verification of the model with the Vicon motion
analysis system was performed. The functional
joint center model of the subjects provided nearly
exact reconstruction of the recorded motion.
Motion of the head does not affect the position of
the hand and was omitted.

Each task was analyzed on a subject basis and the
performance was evaluated based on the
movement of the subject. The gripping angle used
by the subject was the angle at which the RHBM
was tested. In simulation any gripping angle can
be used within the task input parameters.

The RHBM was tested using multiple task
trajectories from the recorded subject data. The
most probable joint configuration for each
trajectory can be estimated by the RHBM, which
will allow future work to optimize task
trajectories for potential training and therapy.

The recorded optimal poses from the control
provide a stricter constraint than joint limits,
ensuring that all joint remain within joint limits.

The new control method has inherent self-
avoidance via the pose estimation algorithm.

Weighting and other control parameters were
optimized in Matlab, to maintain optimum values
based on pose and task requirements.

1.8 Summary of the RHBM

The RHBM is a 25 DoF bilateral upper body model with subject specific kinematic and

control parameters. The segment, or link, parameters of the RHBM are determined from
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the RoM data by the functional joint center methods, detailed in Chapter 3:. The segment

parameters can also be calculated from a linear regression of common anthropometric

measurements of the upper body, which are given in Section 2.3. Each link corresponds

to a rotational DoF; all joints in the model have three DoFs, except the hand which has

only 2 due to the constraints at the wrist. The descriptions of each joint of the RHBM are

given in Table 4.

Table 4: Segment and joint definitions of RHBM

Segment Joint  Right Arm Convention Left Arm Convention
Torso 1 Torso Extension
Torso 2 Lateral Torso Flexion
Torso 3 Torso Rotation
Shoulder R4 Protraction L4 Retraction
Shoulder R5 Depression L5 Depression
Shoulder R6 External Rotation L6 Internal Rotation
Upper Arm R7 Flexion (transverse) L7 Extension (transverse)
Upper Arm R8 Elevation (coronal) L8 Elevation (coronal)
Upper Arm R9 Axial Rotation (external) L9  Axial Rotation (internal)
Forearm R10 Flexion L10 Extension
Forearm R11 Carrying Angle L11 Carrying Angle
Forearm R12 Pronation L12 Supination
Hand R13 Flexion L13 Extension
Hand R14 Abduction L14 Abduction

The joints for the torso (1-3) are common across the left and right arm. The description of

each joint is in terms of the convention used by the robotic model, and therefore

equivalent joints on the right and left arm do not always move in the same direction. In

the clinical convention, Section 3.4, the direction joint rotation is the same on both sides

and is equal to the positive directions of the right arm. A diagram showing the axes of

rotation and the lengths of each segment is given in Figure 7.
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Figure 7: Diagram of the RHBM kinematics (axes top, lengths bottom)

The selected control of the RHBM inverse kinematics was based on the weighted least
norm solution with a null space correction based on the probability density function. The

flow of data for to the development of the RHBM is shown in Figure 8.

Motion Analysis Data

Subject Measures Testing Data
! 8 RoM Tasks 5 ADL Tasks
Training Data
Measurement Functional RHBM Prosthesis
Correlations Joint Centers Control Constraints
Task
B Inputs . -
RHEM .| Performance | .|
Kinematics RHBM Verification System Error

Figure 8: Diagram of the data flow during development of the RHBM

1.9 Dissertation Overview

This dissertation is split into seven chapters based on the approximate chronology of
work performed in the study. This first chapter covered the objectives, motivation,
background, previous work, and a brief preview of the final RHBM. The second chapter
describes the data collection methods, which is then used in the following chapters.
Chapter Three covers the methods for development of the segment parameters and joint

angles, or kinematics, of the RHBM. Chapter Four covers the kinematic results from the
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motion analysis data, as well as the results from the joint center calculations and segment
definitions. Chapter Five covers the development of methods for the various control
algorithms tested. Chapter Six describes the results of the control algorithm testing, and
compares the various methods. Finally, Chapter Seven discusses the final RHBM, other
significant findings, and future work. Each chapter has been written to stand alone, but
occasionally reference to preceding or proceeding chapters or sections are necessary to
provide relevant information without being repetitive. In these cases links to the

appropriate sections are provided.
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Chapter 2: Subject Motion Capture and Measurement

Human motion is a well-studied field of research. Since the goal was to accurately
reproduce and predict human motion it makes sense to start by observing and quantifying
human motion. An eight camera Vicon (OMG plc., Oxford, UK) motion analysis system
was used to collect data from 14 subjects performing RoM and ADL trials. Of the
subjects, 10 were non-amputee controls, one subject used a transradial myoelectric
prosthesis, one subject was a bilateral transhumeral amputee with two body-powered
prostheses, one subject was a unilateral transhumeral amputee with a body-powered
prosthesis, and one subject was a unilateral transhumeral amputee with myoelectric
prosthesis. One of the control subjects had a congenital limb deficiency, missing digits 4
(ring finger) and 5 (digiti minimi) of their right hand, but showed no functional
limitations. A marker set was developed for use with the proceeding methods; and
consisted of up to 31 passive reflective markers, depending on the level of amputation.
These markers were used to track the segment locations during the various tasks, or to act

as redundant tracking points in the case of marker dropout.

The subjects were asked to perform 13 tasks during the motion analysis data collection.
These tasks were divided into two categories: 8 RoM tasks and 5 ADLs. The data
collected during RoM tasks were used to calculate the segment functional joint centers of
the upper body, and analyze differences in range of motion between groups. The
functional joint centers and marker positions were then used to define the segment

coordinate frames. The segment coordinate frames were arranged into a kinematic chain,
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and used to extract the parameters and joint angles of the RHBM. Data collected from

ADLs were used to train the various control algorithms and to analyze the compensatory

movements of the prostheses users and the braced control subjects.

2.1 Subject Demographics

The demographic information for the 14 individuals that participated in this study is

given in Table 5. Anthropometric measurements were taken of each subject according to

the measurement form in Appendix A.1. These measurements were tested for correlations

to the upper body segment geometry extracted from the RoM data. This will allow

clinicians to accurately reproduce the subject kinematics based on measurements that are

taken as part of a routine patient evaluation. Information on each subject’s prosthesis was

recorded and used in creating the component dependent parameters for motion prediction

with different prosthetic devices.

Table 5: Subject demographic data

E E E — >\g o o o g D o b g o D
2 ¢ 3 SE Sy s ER I S5 8y 8%
(?) <CED T m g O < E:l A F o czcs o
co1 21 M 173 625 R - - - - -
C02 25 M 180 79.8 R - - - - -
C03 20 M 181 835 L - - - - -
co4 20 M 180 705 R - - - - -
C05 24 M 186 1005 R - - - - -
Co06 35 M 184 1025 L - - - - -
Cco7 38 F 160 62.0 R - - - - -
Co08 41 M 177 73.2 R - - - - -
C09 58 M 174 905 R - - - - -
Ci10 54 F 166 65 R - - - - -
HO01 61 M 175 90.3 - Bi 17 TR - Hook
HO02 41 M 175 735 L R 26 SS 1.9 Hook
HO03 61 M 174 73 R L 11.5 Utah 2.2 Utah
RO1 48 M 174 88 R R 23.2 i-limb 1.3 Pulse

C = Control Subject, H = Transhumeral Subject, R = Transradial Subject
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2.2 Braced Subjects

Control subjects were asked to complete all tasks with and without a brace on their
dominant arm. The brace restricts pronation / supination of the forearm, as well as flexion
/ extension, and abduction / adduction of the wrist. The inclusion of braced testing for
control subjects allows for a potential reduction of subject range of motion that is similar
to that seen in amputees, although the magnitude of compensatory motions of braced
subjects is generally less than that of amputee subjects [29]. Additionally, studies have
also shown compensatory motions in object manipulation, [91] citing the potential for
shoulder injury in assembly workers wearing splints due to increased upper arm elevation
and axial rotation. This helps to compensate for the limited number of amputee subjects
in order to test the control algorithms, by increasing the amount of data available for

training and testing.

2.3 Anatomical Measurements

The list of manually recorded subject measurements for control subjects is given in Table
6, and are based on measurements by Gordon et al. [92]. All measurements were
recorded using a standard cloth measuring tape.

Table 6: Anthropometric measurement names

ID Description

cC Chest circumference
UCP Upper arm circumference at axilla
UCD Upper arm circumference superior to elbow

FC Forearm circumference distal to the elbow

SC Wrist circumference at styloid process
A2E Acromion to lateral humeral epicondyle
X2E Axilla to medial humeral epicondyle

E2S Lateral humeral epicondyle to radial styloid process (wrist pronated)
E2T Lateral humeral epicondyle to thumb tip (wrist pronated)
S2T Radial styloid process to thumb tip
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Standard measurements for the residual limb of the amputee subjects were also recorded.
Residual limb length measurements were taken from the reference landmark to the end of
the residual limb with the tissue compressed. The list of measurements is given in Table
1.

Table 7: Residual limb measurements

ID Description
PRLC Residual limb circumference at the axilla
DRLC Distal residual limb circumference
A2RL Acromion to residual limb end
X2RL Axilla to residual limb end
E2RL Lateral epicondyle to residual limb end

2.4 Motion Capture

Motion analysis is the process of quantitatively evaluating specific aspects of the
movement of bodies. This is done by taking images of tracking points or markers from
multiple views and triangulating the 3D position of each marker from the intersection of
the projection of the 2D images. The Vicon system used in this study had 8 infrared
cameras that tracked the positions of passive reflective markers placed on the upper body
of the subjects. The markers used in this study are given in Table 8. The total number of
markers and their descriptions is referred to as a marker set. The marker set used for each
subject was dependent on their level of amputation. Non-amputees did not use the
residual limb or socket markers (RSLA, RSLP, SCKTA, SCKTP). If socket trim lines
were very near the shoulder or elbow markers the residual limb markers (RSLA &RSLP)
are neglected. If the socket covered the elbow of a transradial prosthesis user the socket
markers (SCKTA & SCKTP) replace the elbow markers (ELB & ELBM), in the position
of the elbow markers. These changes allow the use of the same starting marker set for a

combination of amputee levels, and for both left and right arm amputees. The tracking
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markers included in the marker set provide additional points for the automatic labeling
algorithm in Vicon Workstation, increasing the ease of the labeling process. The tracking
markers can also be used to reconstruct the position of other markers in the case of
marker dropout. This was done using the marker cluster algorithm [55], and can
regenerate the position of a missing marker provided three markers on the same body

segment are still visible.

Table 8: Marker descriptions

Name Placement
T1 Spinous process; 1* thoracic vertebrae
*T10 Spinous process; 10" thoracic vertebrae
CLAV Jugular notch
*STRN Xiphoid process
*LBAK Middle of left Scapula (asymmetrical)
R/LASI Right / Left anterior superior iliac spine
R/LPSI Right / Left posterior superior iliac spine
*R/LIC Right / Left iliac crest
R/LSHOA Anterior portion of right / left acromion
R/LSHOP Posterior portion of right / left acromion
*R/ILUPA Right / Left lateral upper arm
R/LELB Right / Left lateral epicondyle
R/LELBM Right / Left medial epicondyle
*R/ILFRA Right / Left lateral forearm
R/LWRA Right / Left wrist radial styloid
R/LWRB Right / Left wrist ulnar styloid
R/LFIN Dorsum of right hand just proximal to 3™ metacarpal head
'RSLA Anterior or lateral residual limb above trim line
'RSLP Posterior or medial residual limb above trim line

’SCKTA  Anterior or lateral portion of the socket in line with SHO or ELB markers
2SCKTP  Posterior or medial portion of the socket in line with SHO or ELB markers

*Markers used for tracking and redundancy only, these markers are less sensitive to
placement as they are not used in segment definition.

'For subject where the socket trim line was very near the shoulder for transhumeral
subjects or the elbow for the transradial the residual limb markers (RSLA &RSLP)
were neglected.

?The socket covered the elbow of the transradial subject therefore the socket markers

(SCKTA & SCKTP) replaced the elbow markers (ELB & ELBM), in the position of the
elbow markers.
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2.5 Range of Motion Tasks

This section describes each RoM task as described to the subjects, Table 9. Subjects were
asked to start with enough clearance between their arms and sides to prevent obstruction
of the cameras’ view of the markers. All movements were performed without assistance,
and can be considered active, patient-initiated, RoMs. Each trial was completed three
times to collect an average RoM for each subject.

Table 9: Subject Instructions for RoM tasks
Elbow  Start with your elbows extended, palms facing body, thumbs forward, flex
Flexion /  your elbows until maximum flexion is reached. Hold that position briefly,
Extension and then extend your elbows back to terminal extension.
Start with your elbows flexed to 90° (subject approximated), arms near the
Forearm body, palms facing inward, rotate your forearms inwards toward body to
Pronation / as far as you can, and flex wrist downward. After a brief pause rotate the
Supination forearm outward (supinate) while continuing to point hands down
(extending the wrist). Pause briefly then return to the starting position.
Starting with your arms extended towards the floor, palms facing your
Shoulder body, raise your arms, reaching forward, then up, then backward as far as
Flexion/ you can (maximum shoulder flexion). After a brief pause return arms by
Extension stretching, up, forward, down, and then backward (maximum extension).
Pause briefly before returning to starting position.
Starting with your arms extended toward the floor, palms facing your

A%E%Lélt?g; / body, thumbs. forward, abduct arms with elbows. straight .to maximuim,
Adduction then pause briefly. Adduct arms'back dpyvn crossing arms in front of the
chest, and then return to the starting position.

Starting with elbows flexed to 90° (subject approximated) and arms
Shoulder abducted until parallel with floor, palms facing down. While keeping your
Rotation  UPPer arms parallel to floor rotate the forearm arms downward as far as
you can. Pause briefly then rotate your arms upward to maximum

position. Pause again before returning to the starting position
Torso Start‘ing frgm a Vertica}l standing position, ﬂex‘the torso as far forwarq as
Elexion / possible Wlthout needing to take a step, focusing on bending your spine.
Extension Pause briefly then extend torso backwards as far as you can. Pause again

then return to the starting position.
Torso Starting from a vertical standing position, lean as far to the right as
Lateral possible bending your torso. Pause briefly then lean to the left as far as
Flexion  possible. Pause again then return to the starting position.
Starting from a vertical standing position, keeping your torso upright,
rotate to the right as far as possible. Pause briefly then rotate to the left as
far as possible. Pause again then return to starting position.

Torso
Rotation
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For the RoM tasks the subjects were led by a researcher to ensure that they were moving
their joints through the proper range of movement associated with each task. The speed
the subjects perform each task, and the duration of all pauses was selected by the
subjects. Additionally subjects were asked at the start of the collection to not over-exert

themselves, to reduce the risk of injury.

2.6 Activities of Daily Living

The ADLSs as they were presented to the subjects are given in Table 10. Similar to the
RoM tasks, subjects were asked to start with enough clearance between their arms and
sides to prevent obstruction of the cameras’ view of the markers. All ADLs were
performed without assistance. All subjects were able to complete the specified tasks.
Each activity was completed three times for intra-subject comparison. Unilateral tasks
were completed with the dominant, braced, or prosthetic arm. No instructions were given
for the pose or movement for the uninvolved arm during unilateral tasks.

Table 10: Description of ADLs
Bushing Stand with your arms at your side facing the table. Pick-up a brush from
Hair the table, ‘Brush’ your hair (subject selected duration), return brush to the
table, and return to the starting position.
Drinking  Stand with your arm at your side with the elbow flexed to approximately

from a 90° holding the cup. Raise the cup to your mouth to ‘drink’, lower the cup
Cup back to the original position.
Eating In a seated position, start with your arms on either side of the place setting.

with Knife Grasp the knife and fork, mime cutting a piece of steak, mime eating, then

and Fork  set down knife and fork, and return to starting position.

Liftinga  Starting from a comfortable standing position, pick the basket (10 Ib) up

Laundry  from the ground, raise and place the basket on the table (height: 82 cm),

Basket release basket and return to a comfortable standing position. Pick the
basket up from the table, return the basket to the original position on the
ground, and then return to starting position. (Lifting the basket and
returning it to the floor is considered one trial).

Opening a Stand with your arm at your side facing the door. Open the door, and then

Door return to the starting position. Closing the door is not included in the
recorded data.
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Chapter 3: Determining Functional Joint Centers and Upper Body Segments

To generate a geometrically accurate model of the upper body, without increasing the
complexity of the model, functional joint center calculations were used to define the
model segment. The use of functional joint centers for upper body modeling has not been
published; however several algorithms have been published for general use, and for use
in the lower limb. Specifically a least squares sphere fit method [64], an optimization
algorithm for finding the joint center of the hip by Piazza et al. [56], and a gradient based
optimization for automatic skeleton generation by Schénauer [58], have been developed.
To test the different algorithms, a field of 3 random points was generated in Matlab and
rotated about a known constant center. Each algorithm was then used to find the joint
center given different levels of noise. The error between the calculated joint centers and
the known center of rotation was then evaluated. Each method was also tested in
generating the location of the glenohumeral joint center given data with varying RoM
[93]. The least squares method was very accurate without noise but quickly became
unstable when noise was introduced. The method developed by Piazza had a consistently
higher average error than the gradient method; however, it was less susceptible to noise
than the least squares method. The gradient method developed by Schénauer was found
to be the most resilient method, with its greatest limitation being that high errors occurred
in instances where the initial guess was poor, which resulted in error even in the case

where no noise was introduced [94].
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Since a reasonable initial guess can be found for anatomical joints by using the relative
position of markers, the gradient method was chosen for use in this study. The functional
joint center was calculated by optimizing the cost function which penalizes the variation
in distance between each point and the distal segment and potential joint center. The cost
function is given in Eq. 1 and the function for average distance between the tested point
and a point on the distal segment is given in Eq. 2. The cost function increases as the sum
of the variance of the distance between the position (x,y, z) and all points in an m by 3 by
n array increases, where m is the number of samples, and n is the number of markers. Px}
is the x position of point i at time (or sample) k. The point Px. was the element P(k, 1, i).
The minimum of the cost function is the position where the distance between (x, y, z) and
all points of P is constant. This assumes that the body was undergoing primarily rotation,

and that translation was relatively small within the reference frame.

2

Eq.1 Clx,y,2) = Xty Yieq [\/(Px;( — x)2 + (Pyt — y)2 + (Pzt — z)2 — Ravg’

2}"‘:1j(Px;.‘—x)z+(Py§(—y)2+(Pz§(—z)2
m

Eq. 2 Ravg'(x,y,z) =

The initial guess for the joint center was the average of marker positions placed on the
body near the joint center. This method has proven to be effective where a sufficient
RoM was present. The RoM tasks, Section 2.5, in this study provide the necessary data to

ensure accurate joint centers using this method.

3.1 Importing Data from Motion Capture
All of the kinematic and joint center calculations were performed as a batch process in

the CreateUBM.m, Appendix B.1, Matlab file on a subject basis. Data collected in Vicon
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Workstation were saved into the *.c3d format which contains the marker position data.
Data were imported from the motion analysis files into Matlab matrices using the c3d
server application developed by Walker and Rainbow [95]. A data structure was created
for the RoM data, the subject was defined as a field in the RoM field, each trial was a
field within each subject, and marker data were stored as variables inside the task field.
The data were loaded automatically by reading the subject data directly and loading the
*.c3d files into fields based on the folder names, trial names, and the desired subject
number specified by the user. Figure 9 shows the configuration of the file structures

required for the programs to operate correctly.

-|\Subjects \Subject 1 |——| \ADL |——| Trial 1.c3d |
s -|\SubFunctions | \Subject 2 |
% H RHBM.m | ] H ]
~ | H createuBM.m |4 \subjectn |
H TrainBi.m | — wom | Traiiaa |

Trial 2.c3d

Trial n.c3d

I

Figure 9: RHBM file directory setup

Any spaces in trial names are removed with the removewhite.m, Appendix B.2, function,
as spaces are not allowed in Matlab field names. After all of the trials have been loaded,
the marker position data were filtered using a low pass filter. The WMAfilter.m, Appendix
B.3, function was used to filter the data. The function creates a linear weighted moving
average with the width specified in the first input. An 11 point width filter was used to

filter the raw position data to remove noise.
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3.2 Segment Definitions and Joint Centers

Each segment was defined by an origin and two defining lines using createSegment.m,
Appendix B.4. Each segment in the RHBM was centered at the origin. The unit vector
parallel to the first defining line becomes the first axis of the segment. The unit vector
parallel to the cross product of the first and second line becomes the second axis. Finally
the cross product of the first two axes becomes the final axis. The order of the axis names
was set in the model using a string, for instance if the first, second, and third axes were X,
Y, and Z, then the string would have been defined as ‘xyz.” In order to maintain the right
hand rule, the direction of the third axis depends on the order specified, for instance in the
case of ‘yxz’ the negative of the cross product of the Y and X axes becomes the Z axis.
The 4 by 4 homogeneous transformations for each point in time, as well as the direction
of each axis, were saved as fields in the segment structure. The segment structure was
saved into a field for each task. Point data were described in the segment frame by adding
the point to the segment structure by calling the addPoint2.m, Appendix B.5, and
addDistalPoint.m, Appendix B.6, where the latter was used to define the points used for

the functional joint center calculation, to find the next segment origin.

3.2.1 Pelvis

The pelvis segment was the primary reference frame for all upper body markers and was
used to describe the relative location of objective positions in end effector space. Because
the RASI and LASI markers were prone to being obscured when subjects bent over, a
reconstruction algorithm was created. If no additional tracking markers were used then
the reconstruct.m Appendix B.7 was used, which can find the position of missing

markers as long as only one was missing at a time. If the tracking markers RIC and LIC
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were used then clusterReconstruct.m, Appendix B.8 was used and can regenerate the
pelvis markers if up to three markers were missing from the pelvis. If more than three of
the pelvis markers are missing it was impossible to generate the pelvis frame. The ISB
recommendations for the pelvis are included in the lower body definitions [9]. The Z-axis
was defined as parallel to the line connecting the right and left ASI markers, pointing
right. The X-axis was defined as the line orthogonal to the Z-axis lying in the plane
defined by RASI, LASI, and the midpoint of the LPSI and RPSI (MPSI). The Y -axis was
defined perpendicular to the X and Z axes, maintaining the right hand rule. The segment
was defined with the MPSI as the origin, because the segment was used for movement
relative to the torso, and not the thigh as in the ISB lower body recommendations. The
first defining line was defined from LASI to RASI, and the second is defined from MPSI
to RASI, with the convention ‘zyx.” The orientation of the frame relative to the pelvis

markers is shown in Figure 10.

MPS|
Z-axis <0—©@ O LPSI
RPSI
X-axis
rasl © O O Lasi
MASI

Figure 10: Diagram of the pelvis definitions

The T1 and CLAV marker were then defined in the pelvis segment and added to the
pelvis structure. All of the positions of the T1 and CLAV for all of the RoM tasks for
each subject was concatenated into a single array, pelvisCompiled, and sent to the
MLOptim.m, Appendix B.9, function to calculate the functional joint center of the torso

segment in the pelvis frame.
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3.2.2 Torso

The torso segment is defined in the ISB recommendations with the Y-axis parallel to the
line from the midpoint between the xiphoid process and 8th thoracic vertebra (T8) to the
midpoint of the jugular notch (CLAV), and 7th cervical vertebra (C7). They define the Z-
axis as the line perpendicular to the plane formed by the CLAV, C7, and the midpoint of
the xiphoid process and T8, positive to the right. The X-axis is defined as the line
perpendicular to the Z and Y axes. In our model we use the functional joint center of the
torso instead of the midpoint of the xiphoid process and 8th thoracic vertebra, allowing us
to eliminate markers. The T1 marker is used instead of the C7 to help eliminate soft
tissue movement of the neck. The origin is set to the functional joint center. The first
defining line is defined from the torso joint center to the average of the CLAV and T1
markers. The second defining line is defined from CLAV to T1, with the convention

‘yzx.” The orientation of the frame relative to the torso markers is shown in Figure 11.

Z-axis (ITP)

X-axis ?’I@)

Torso Joint Center

Figure 11: Diagram of torso segment definitions

The rotational order between the torso and the pelvis was ‘zxy’ which represents torso
flexion, lateral flexion, and rotation. Since the torso segment and all distal segments after
it follow a similar convention, the processing was performed in the autoSegments.m

function, Appendix B.10. This function creates the segment as defined above, calculates
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the joint center of the next segment, and then re-defines the segment by replacing the
average of the two segment markers (CLAV and T1 for the torso) with the joint center of
the distal segments as the second point on the first defining line. This ensures that the

distance between centers is described in the Z-axis of the proximal segment.

3.2.3 Shoulder

The shoulder is the segment that connects the torso and the upper arm and approximates
the movement of the clavicle and the scapula. The ISB recommendations separate the
clavicle and scapular movement and have individual segment definitions for each system.
However, tracking scapular movement with skin markers is difficult due to the large
displacement of bone relative to the skin over the scapula. Due to this error, and the
relatively small movement between the glenohumeral joint and the acromioclavicular
joint the motion of the scapula and the clavicle are approximated as a single segment,

which is referred to as the shoulder segment.

The origin of the shoulder segment was defined as the functional joint center of the
shoulder complex. The first defining line was defined from the functional joint center of
the shoulder complex to the functional joint center of the upper arm. However since we
need a segment definition to find the functional joint center of the upper arm, the average
position of the anterior and posterior shoulder markers are used temporarily. This process
was repeated with all segments distal to the torso. The second defining line is the line
from the posterior to anterior shoulder marker on the right, and anterior to posterior on
the left. The segment axis order is ‘zyx,” making the segment orientation similar to the
ISB definitions. The ‘yxz’ rotational order is used between the shoulder and the torso.

The Y axis represents the protraction of the shoulder segment on the right, and retraction
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on the left. Rotation around the X axis represents rotation depression of the shoulder on
the right and left. Rotation about Z represents the roll or sagittal rotation of the shoulder
segment, and is internally positive on the right and negative on the left. The orientation of

the frame relative to the shoulder markers is shown in Figure 12.

RSHOP X-axis LSHOP
O . L
. Right Shoulder A
i Z-axis J.C. Z-axis
AVG () « ® @ > ) AVG
v Left Shoulder
O J.C. O
RSHOA X-axis LSHOA

Figure 12: Diagram left and right shoulder segment definitions

The shoulder is also the first segment where there exists a right and left pair. Since there
is no assumed symmetry in the model, each side is calculated separately. Because we
would like the right and left sides to be as consistent as possible, the same segment
definitions were used for the creation of the segments on the right and left side. This
necessitates modification of the raw segment rotation into clinically relevant joint angles,
Section 3.4, since the direction of the segment axes varies and the segment definitions
must obey the right hand rule. The segment orientations for the left and right side are
shown in Figure 12. Positive rotation of the X-axis on the right side is depression of the
shoulder, and on the left it is elevation. Positive rotation of the Y-axis is protraction of the
shoulder on the right and left side. Rotation of the Z-axis is best described as axial

rotation of the clavicle, and is also in the same direction on both sides.

3.2.4 Upper Arm
The upper arm and forearm segment definitions are very similar to the shoulder

definition. The first defining line was defined from the upper arm joint center to forearm
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joint center, with the average of the medial and lateral elbow markers serving as the

temporary joint center. The second defining line was defined from the lateral to medial
elbow marker on both right and left sides. Both sides use the ‘zyx’ axis definitions. The
axes represent flexion, abduction, and rotation of the upper arm about the glenohumeral

joint center. The orientation of the frames relative to the elbow markers is shown in

Figure 13.
1
RELB : LELB
0 ; O
i 1
Z-axis X-axis | X-axis Z-axis
< | S
AVE O < 1@ (oor) . (TP) . i
v Right Upper Arm ' Left Upper Arm v
O J.C. ! J.C. O
RELBM I LELBM
1

Figure 13: Diagram of left and right the upper arm segments

The ‘yxz’ free axis rotational order between the shoulder and upper arm segments is used
to find the joint angles. The Y-axis represents flexion (or plane of elevation) in the
transverse plane of the shoulder complex. The X-axis represents abduction (elevation) in
the frontal plane of the shoulder complex. The Z-axis represents axial rotation of the

upper arm about the glenohumeral joint center.

3.2.5 Forearm

The motions of the forearm segment include flexion, carrying angle, and pronation about
the center of rotation, which is located at the elbow. The first defining line was defined
from the forearm joint center to the average of the wrist markers. The second defining
line was defined from the ulnar to radial marker on the right and from the radial to ulnar

wrist marker on the left. The ‘yxz’ order was used to define segments on both the right
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and left sides. The orientation of the frames relative to the wrist markers is shown in

Figure 14.
| .
. X-axis
RWRB I I-VgDRB
Q Right Forearm ' A
Z-axis J.C. I -axi
AVG () < - ® ; @ 2206 L 6 ave
é . Left Forearm
0 ! 1C. O
RWRA : LWRA

X-axis I

Figure 14: Diagram of the forearm segments

The rotational order ‘yxz’ was used to find the free axis rotational angles between the
forearm and upper arm. Rotation about the Y-axis represents flexion of the elbow in the
sagittal plane of the upper arm, rotation about the X-axis represents the carrying angle of
the arm, and rotation about the Z-axis represents pronation and supination of the forearm.
The carrying angle [96] is extracted from the rotation about the X-axis. The carrying
angle is nearly constant for each subject but varies between subjects and has potential as

a design variable for optimizing performance of prosthetics.

3.2.6 Hand

The hand was defined using the wrist markers, the marker on the third metacarpal head,
and the joint center of the hand. The first defining line goes from the joint center to the
metacarpal head, and the second line was defined from the ulnar to radial marker on the
right and from the radial to ulnar wrist marker on the left. The ‘zyx’ axis definition order
was used on both sides. The rotational order for the hand relative to the forearm was
‘xyz’. The X-axis rotation of the hand is the flexion / extension of the wrist and the Y-

axis is abduction / adduction. Because the X-axis of the forearm was used in the
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definition of the hand segment, it only has two DoFs and the Z-axis rotation of the hand
was always zero. The orientation of the frames relative to the wrist and hand markers is

shown in Figure 15.

Right Forearm | Left Forearm

X-axis : X-axis Koanis
Right Hand : ! N
RFIN J.C. : E Z-axis LFIN
Z-axis ! H
A4 I Left Hand
; J.C.
X-axis .

I
Figure 15: Diagram of the hand segments

3.3 Determining Denavit and Hartenburg Parameters and RHBM Joint Angles
After all of the segments have been defined, and the joint centers have been calculated,
they are redefined using the distal joint center in place of the average of the distal
markers for all segments except the torso and the hands. This redefinition makes the
distance between segments lie entirely on the Z-axis, which simplifies the calculation of
the Denavit and Hartenburg parameters as described in the convention established by
Craig [97]. This redefinition does not change the location of the joint centers in space, but
the orientation of each segment. The distance between the joint centers also remains the
same, and equal to the square root of the sum of the squares of the position elements in
the temporary frames as given in the tables of the preceding section. Joint angles are
calculated from the segment homogeneous transforms using the autoFindTheta.m
Appendix B.11, and the findTheta.m Appendix B.12, functions. findTheta.m calculates
the Euler angles given a 3 by 3 rotation matrix and a given convention, and
autoFindTheta.m calculates the rotation matrix for all points of all trials for all subjects

and then calls findTheta.m to find the joint angles. The rotational order ‘zxy’ was used for
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the torso, ‘xyz’ was used for the hands, and ‘yxz’ was used for all other segments. The

joint angles for the RHBM required the addition of offsets to match the existing

conventions, and maintain orthogonal joint axes. The angular offsets, as well as the other

Denavit and Hartenburg parameters, are defined in createRobot.m, Appendix B.13.

Descriptions of the parameters used in the RHBM are given in Figure 16. The full lists of

parameters as they are used to create the links of the RHBM are given in Table 12. A

graphical representation of the upper body model using the parameters from subject C03

is shown in Figure 16.
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Figure 16: Matlab plot of robot [90] object for subject C03

Table 11: Description of Denavit and Hartenberg parameters

Name Description
A Link Length: the distance along the line normal to both axes
o Link Twist: the angle between the current link axis and the next link axis
D Link Offset: the distance between the center of the current link and the
next along the link axis.

Q) Joint Offset: the initial rotation of the link about its axis

R1-14  Links of the right arm model

L1-14  Links of the left arm model

RSJC,,, X, Y,Zposition of the right shoulder joint center.

RUAJC, Z position of the right upper arm joint center (shoulder segment length).
RFJC, Zposition of the right forearm joint center (upper arm segment length).
RHJC, Z position of the right hand joint center (forearm segment length).

LSJC,,, X, Y,Z position of the left shoulder joint center.

LUAJC, Z position of the left upper arm joint center (shoulder segment length).
LFJjC, Z position of the left forearm joint center (upper arm segment length).
LHJC, Z position of the left hand joint center (forearm segment length).
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Table 12: Denavit and Hartenburg parameters
Link « A 0 D Segment

Axis  Positive Convention

R2 /2 0 -1t/2 0 Torso X

Right Lateral Flexion

R4 0 RSJCZ + RSJC? —atan2(RSJC,, RS]C,) RSJC,  Right Shoulder Y Protraction

R6  -m/2 -1/2 RUAJC, Right Shoulder V4 External Rotation

R8  -m/2 0 -1/2 0 Right Upper Arm Adduction

=

<

R10 -m/2 0 -1/2 0 Right Forearm Flexion

RI2 -2 0 0 RHJC,

N

Right Forearm Supination

R14  7w/2 0 0 0 Right Hand Adduction

=

L2 w2 0 -1/2 0 Torso X Right Lateral Flexion

L4 0

LSJC2 + RSjCZ2 m —atan2(LS]JC,, LS]C,) LSJC, Left Shoulder Y Retraction

L6 -n/2 0 -1/2 LUAJC, Left Shoulder Z Internal Rotation

L8 -n/2 0 -1/2 0 Left Upper Arm X Adduction

L10 -w/2 0 -1t/2 0 Left Forearm Y Extension

L12 -n/2 0 0 LH]C,  Left Forearm Z Pronation

L14 w2 0 0 0 Left Hand X Adduction
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3.4 Clinical Joint Angles

The direct rotations of segments are used in the kinematics calculations. However, due to
the complexity and conventional requirements of the model, these joint angles can be
difficult to interpret. The Euler angle rotations of the shoulder can also result in gimbal
lock, where the axes of rotation become aligned, resulting in reduced manipulability of
the joint and high joint angle velocities become necessary for small movements. To
increase the ease of clinical analysis of joint angles, the raw joint angles are re-computed
in a more intelligible context. This section describes the conventions used for the clinical
joint angles, and how they are calculated. The free axis rotational, orders ‘zxy’ for the
torso, ‘xyz’ for the hands, and ‘yxz’ for the other segments were used in the robot angle
calculations. The robotic convention for joint angles also includes the angular offsets

required to manipulate the robotic model, which are not included in the clinical angles.

3.4.1 Rotational Conventions

The rotation between two segments can be described by the projection of the distal frame
axes Rd,, Rd,, and Rd, onto the proximal frame. Where Rd, is a 3 by 1 vector, [R11,
R21, R31]", of the projection of the distal X axis onto the X, Y, and Z, axes of the
proximal frame, and Rd,and Rd,, are the projections for the distal Y and Z axes
respectively. This creates the 3 by 3 rotational matrix, R, that describes the rotation

between the segments, as shown in Eq. 3.

R11 R12 R13
R21 R22 R23
R31 R32 R33

Eq. 3 R = [Rd, Rd, Rd,]=

The rotation between segments can also be described by rotations about a series of axes.

The rotation between frames, 4R, can be achieved by rotating about the segment axes by
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angles y, #, and «a either in the proximal or fixed frame Eq. 4, or about the rotating or free
frame Eq. 5. In these cases, Ry, Ry, and R, represent the rotation about the X, Y, and Z
axes respectively. The free axis rotations are also referred to as the Euler angles.

Eq. 4 ngixed (v, B, @) = Rz(a) * Ry(B) * Rx(y)

Eq. 5 ngree(YJ B, a) = Rx(y) * Ry(B) * Rz(a)

In the kinematics calculations of the RHBM, the free, or Euler angle rotations are used. A
combination of fixed and free rotation can be used to better describe the motion of each
joint. The first two rotations can be considered to be about the fixed axis of the proximal
segment by switching their order of rotation. For instance the rotations of the torso are
calculated as the free axis rotations ‘zxy’ which is torso flexion about the torso Z axis,
lateral flexion about the rotated X axis, and rotation about the rotated Y axis. In
anatomical terms we can also describe this rotation as rotation about the fixed pelvis X
axis, then the fixed pelvis Z axis, and the rotated torso Y axis. This does not change the
joint angles but makes the rotation easier to visualize.

Eq. 6 SR mixed(Brixea ¥ fixed Apree) = Rx(¥) * Ry(B) * Rz (a)

This allows the clinical description of the Euler angles, but does not address the problems
with gimbal lock of the shoulder. The clinical shoulder joint angles did not follow the
ISB recommendations [8], as they have been shown to be prone to gimbal lock. In fact,
investigations of Euler rotations for the shoulder found no rotational sequence was
clinically interpretable for all movements [98]. Therefore a new convention for clinical
shoulder angles was developed. Shoulder flexion, @r..i0n, and abduction,

O apauction.Were described as the arcsine and arccosine of the projection of the axis of the

humerus, or upperarm Z-axis, onto the anterior / posterior, and superior / inferior axes of
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the shoulder segment, which are the shoulder X and Y-axes respectively. The calculation
of shoulder flexion and abduction from the rotation matrix elements is given in Eq. 7 and

EQ. 8 respectively.
Eq. 7 OFiexion = aSin(R13Upperarm)

Eq. 8 O abauction = a€0S(R23ypperarm)

Calculation of the upper arm rotation in a clinical context is more difficult. The definition
of internal and external rotation of the upperarm for varying levels of flexion and
abduction are not well defined in a clinical context. For this study the orientation of the
upperarm segment that maximizes the sum of the projections of the upper arm segment X
and Y-axes onto the shoulder segment X and Z-axes, while maintaining the Z-axis
orientation as described by the flexion and abduction angles. This minimizes the
difference between upperarm segment orientation, and the standard orientation used
when clinically evaluating shoulder range of motion. The derivation of the upper arm
rotation angle is given in Eq. 9 through Eq. 20. Where Rypperarm iS the rotation of the
upper arm relative to the shoulder, Rp, is the rotation associated with flexion and
abduction to the point of neutral rotation, Rgeeation, 1S the Z axis rotation of the upper arm
relative to the neutral axis, and 0,.,:4:i0n, IS the angle of upper arm rotation. First, Rp, is
found in terms of Rypperarm @aNd Rgotation, DY Multipluing both sides of the euation by

the transpose of Rrotation, @S Shown in Eq. 9 through Eq. 11.

Eq 9 Rp * RRotation = RUpperarm
Eq 10 Rp * RRotation * RRota\tionT = RUpperarm * RRotationT
Eq 11 Rp = RUpperarm * RRotationT
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Then by substituting the elements of the rotational matrices the values relating to the
projections of the upper arm segment X and Y -axes onto the shoulder segment X and Z-
axes can be found, Eq. 12 through Eq. 17.

R11 R12 R13

R21 R22 R23
R31 R32 R33

Eqg. 12 RUpperarm =

. T
T cos(@rotation) _Sln(@rotation) 0
EQ- 13 RRotation = Sin(@rotation) cos(@rotation) 0
0 0 1
cR sR 0
Eq. 14 RRotation. = |—SR cR 0
0 0 1
R11 R12 R13 cR sR 0
Eq. 15 Rp = |R21 R22 R23|*|-sR cR 0
R31 R32 R33 0 0 1

R11xcR—R12+sR R11+*sR+R12x*cR R13
Eq. 16 Rp = |R21 xcR—R22+*sR R21*sR+R22x*cR R23

R31+xcR—R32+sR R31+sR+R32x*cR R33
Eqg. 17 maximize((R31 — R12) * sR + (R32 + R11) * cR)

Finally by setting the derivative of Eq. 17 relative to 0,.,:4:i0n the Upper arm rotation can

be solved, as shown in Eq. 18 through Eq. 20.

Eq. 18 (R31—-R12) *cR — (R32+ R11)*sR =0
Eq. 19 (R31—R12) *cR = (R32 + R11) * sR
Eq. 20 Ootation = atan2((R31— R12),(R32 + R11))

Additionally, to maintain the right hand rule and allow for control of the RHBM, the joint
angles of the segments on the right and left hand of the model do not share the same
rotational conventions. To fix this problem the raw joint angles are inverted for select
joints on the left arm to allow the left and right clinical joint angles to describe the same

direction of rotation. The rotation from the torso to shoulder segments requires a 180
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degree rotation about the torso Y axis, so an offset is added to the L4 joint angle to
maintain the same initial angle. Table 13 shows the conversions required to calculate the
robotic and clinical joint angles given the raw joint angle data.

Table 13: Conversion between joint angle conventions (radians)

Raw Robotic Clinical
1 R1 1
2 R2 - n/2 2
3 R3 + Tn — atan(%) 3
RSJCy
R4 R4—atan(m) R4
R5 R5 - /2 R5
R6 R6 - n/2 R6
R7 R7 - n/2 asin(R(1,3)y4)
R8 R8 - /2 acos(R(2,3)y4)
(R(3,D)ya — R(1,2)ya)
R9 R9 - /2 atan( (RG.2)ya + R(1;1)UA)>
R10 R10 - /2 R10
R11 R11 - /2 R11
R12 R12 R12
R13 R13 +m/2 R13
R14 R14 R14
L4 L4 +m— atan(%) 14+7
LSJC,
L5 L5+ /2 L5
L6 L6 - /2 -L6
L7 L7 -n/2 -asin(R(1,3)y4)
L8 L8 - /2 acos(R(2,3)y4)
(R(3.1)ya—R(1,2)ya)
L9 L9 - 12 -atan ( (R(BJZ)WR(LDUA))
L10 L10 - /2 -L10
L11 L11-n/2 L11
L12 L12 -L12
L13 L13 +m/2 -L13
L14 L14 L14

Raw joint angles are calculated from the segment rotations by autoFindTheta.m, the
robotic joint angles are calculated in CreateUBM.m using the raw angles and the Denavit
and Hartenburg parameters, and the clinical joint angles are calculated by ROMtest.m,

Appendix B.14, at the same time the range of motion for each subject is calculated.
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3.5 Saving the Model Data

The final model uses the Denavit and Hartenberg parameters defined in Table 12 and the
robotic joint angles as described in Section 3.3. These variable are saved into the Train
structure as Train.(subjectlD).RUpperbody, Train.(subjectID).LUpperbody,
Train.(subjectID).(trialname).RTheta, and Train.(subjectID).(trialname).LTheta, in a
Matlab file (subjectlD)UpperBodyModel.mat. The training and testing functions for the
control are able to run using only these variables, and all other variables are stored into
(subjectID)Data.mat. The workspace is then cleared before running the process for the
next subject. This process minimizes the amount of data in the workspace at any given
time and stores all of the data for reference if needed. Since some of the training

algorithms are memory intensive, preserving the memory available is crucial.
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Chapter 4: Motion Analysis and Segment Length Results

This chapter presents the results from the motion capture, subject measurements, and
functional joint center calculations. The clinical joint angles of the un-braced control
subjects were compared to the braced control subjects, and the amputee subjects. The
subject anthropometric measurements were correlated to the segment lengths as
calculated by the functional joint center method. Significant differences were determined
by analysis of variance and multiple comparison tests in Matlab using the anovan.m and

multcompare.m function with a 95% confidence interval.

4.1 Control Subjects’ Range of Motion

The RoM of each joint is an indication of that joint’s health and ability to add to the
workspace of the upper body. In this study the RoM of each joint of the upper body was
analyzed for several reasons. The RoM relative to averages of the control subjects
indicated the impedance / capability of the prosthesis and socket, which was then be used
to control the capability of the model in the control algorithms. The angles given in this
section follow the conventions of the clinical joint angles, as given in Section 3.4, which
allow for the left and right arm to be analyzed as dominant or sound side, versus non-
dominant or prosthetic side. The average and standard deviation of the minimum,
maximum, and RoM of the un-braced control subjects are given in Table 14. For this
section all motions were evaluated relative to the dominant (D) or non-dominant (N) arm,
rather than the right (R) or left (L). No significant difference (p<0.05) was found between

dominant and non-dominant joint RoM for un-braced control subjects.
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Table 14: Range of motion for control subjects (degrees)

Min Max RoM
Segment Description ~ Joint Avg. S.D. Avg. S.D. Avg. S.D.
Flexion 1 -43 15 34 13 76 23
Torso Lateral Flexion 2 33 9 33 8 66 17
Rotation 3 -45 12 43 10 88 20

. D4 -32 8 40 14 72 15
Protraction

N4 -30 6 42 13 72 13
. D5 54 9 38 9 92 10
Shoulder  Depression N5 -53 9 45 9 99 10
Rotation Do S e
N6 -25 9 61 17 86 14
Flexion R P P ot
N7 -44 11 75 20 120 26
Upper Elevation T T
Arm N8 -13 9 66 8 79 10
Rotation D9 -73 13 63 28 136 31
N9 -69 14 53 18 122 23
: D10 12 7 149 5 137 7
Flexion

N10 9 7 149 5 140 6
D11 -14 3 10 6 24 6
N11 -14 4 9 6 23 4
D12 -74 24 78 28 152 37

Forearm Carrying Angle

Pronation N12 -66 14 63 8 130 16

Flexion I

Hand N13 -55 15 71 12 126 13
Abduction YRR TR T

N14 -12 17 24 10 37 16

4.1.1 Braced Subjects’ Range of Motion

For the braced trials an arm brace was attached to the subjects’ dominant arm. The
subjects were instructed not to force the brace movement by overpowering the brace
material, but rather to move through any slack in the brace, until they felt moderate
resistance. The brace was a Restorative Care of America Incorporated (St. Petersburg,
FL) wrist and elbow brace, where the elbow was not restricted. This configuration
restricts the movement of forearm pronation, and wrist flexion and extension. Significant
differences (p<0.05) in the subject range of motion between braced and un-braced

subjects were found between braced arm joints D8, upper arm abduction, D10, elbow
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flexion, D12-14, forearm pronation, wrist flexion, wrist abduction of the braced arm, and
N10, un-braced arm elbow flexion. This implies that the brace had a significant impact on
the braced arm. Additionally there was a significant difference between the braced and
un-braced arms when wearing the brace for joints 8, upper arm abduction, 10, elbow
flexion, and 12-14, forearm pronation, wrist flexion, and wrist abduction respectively.
RoM results for braced subjects are shown in Table 15.

Table 15: Range of motion of braced control subjects (degrees)

Min Max RoM
Segment Description  Joint Avg. S.D. Avg. S.D. Avg. S.D.
Flexion 1 -3 23 32 15 67 31
Torso = Lateral Flexion 2 -31 11 30 16 61 26
Rotation 3 42 21 43 15 85 35

D4 -33 7 32 20 65 23
N4 -27 12 40 13 67 21
D5 -46 17 32 11 78 23
NS -47 18 39 13 86 26
D6 -24 6 60 24 84 25

Protraction

Shoulder Depression

oLl N6 24 6 53 24 76 24
Flexion D7 31 30 76 16 107 40
N7 -40 20 74 20 114 37
Upper Clevation D8 -5 13 59 9 65 11
Arm N8 -12 11 64 9 76 13
~otation D9 61 32 54 16 115 38
N9 -69 24 52 15 121 28
. DI0 24 13 132 9 108 8
Flexion

N1O 14 8 145 8 131 11
pi1i1 -8 8 13 14 21 9
N11 -14 6 7 8 21 7
D12 -13 26 21 27 34 14

Forearm Carrying Angle

Pronation N12 -67 11 62 14 130 22

Flexion R N EETLEE

Hand N13 -51 13 66 13 117 15
Abduction T T T T T

N14 -11 20 20 15 30 10

With the exception of forearm pronation of the non-braced limb the average RoM for all
joints of the braced subject trials was less than the average RoM of the non-braced

subjects. Figure 17 also shows the impact of bracing on RoM in terms of the average
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maximum and minimum joint angles with standard deviation. Variation in the braced
position of the forearm and hand between subjects contributes to the high standard
deviation in the maximum and minimum joint angles for the braced forearm and wrist
joints (D12-D14). The standard deviation of the RoM of the braced joints was less than

the standard deviation of the maximum and minimum joint angles.
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* = Significantly different RoM (p<0.05) between subjects
“ = Significantly different RoM (p<0.05) between arms for braced subjects
Figure 17: Impact of bracing on range of motion

4.2 Amputee Subjects’ Range of Motion

This section compiles all of the results for the amputee subjects in the sample. Due to the
limited number of amputees included, these data are largely observational and may not be
widely generalizable at this time. A larger sample is recommended for future work.
Amputee subjects exhibited a decrease in RoM of the prosthesis relative to the control

subjects, on their prosthetic side. In this section each joint number is listed as the

dominant (D) or prosthetic (P) side.
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4.2.1 Subject RO1
This subject was the only transradial amputee to complete the study. His RoM was very
similar to the control subjects’ with exceptions to the wrist and forearm of his prosthetic

arm, as shown in Figure 18.
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Figure 18: RoM of subject RHO1 (blue) superimposed over control RoM (red)

The angle of shoulder rotation (P9) was elevated above the control range, with the min
and max both above the standard deviation of the control subjects. This may be caused by
the alignment of the prosthesis relative to the anatomical elbow, or potentially
contributed to misplacement of the markers due to the inability to palpate the epicondyle
of the elbow, as they were covered by the socket. The motion of the wrist of the

prosthesis was primarily passive and actuated by the contralateral limb between trials.

4.2.2 Subject HO1
This subject was the only bilateral amputee in the tested group. The extreme reduction in

RoM of the distal limb joints, with the exception of the elbow, can be seen in Figure 19.
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Figure 19: RoM of subject HO1 (blue) superimposed over control RoM (red)

The range of motion of the ADL tasks shows the limitation of the prosthesis, with little or
no motion available at the wrist, and restricted motion of the shoulder. Impressively, this
subject was able to complete all of the ADL tasks, with what seemed to be less difficulty
than some of the other amputee subjects. This may be due to the fact that, because he was
a bilateral amputee, he has been forced to use his prostheses for all of the tasks in his
daily life. The unilateral amputee subjects have the option and likely elect to use their

intact contralateral limb for most activities in their daily life.

4.2.3 Subject H02

This subject had a unilateral transhumeral amputation, and used a body-powered
prosthesis. His RoM was reduced, but not nearly as drastically as subject HO1. Subject
HO02 had a large range of motion of the Torso (1-3, on the higher end relative to the
control subjects) and some decreased motion of the scapular complexes (4-6), but
maintained a moderate range of motion of the upper arm about the glenohumeral joints

(7-9). Motion from upper arm rotation and about the wrist (P9, P12-14) came mostly
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from passive joints moving under gravity, and from actuation of the hook. The RoM of

subject HO2 relative to control averages is given in Figure 20.
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Figure 20: RoM of subject H02 (blue) superimposed over control RoM (red)

Additionally, subject HO2 was in very good health. He had a highly muscular upper body,
and reported performing 300 push-ups 5 days a week using a push-up rig that he designed
and built himself. Despite being well conditioned, he did have some difficulty with the
unilateral ADL tasks, which the protocol required each subject to complete with the

prosthetic side.

4.2.4 Subject HO3

This subject was a unilateral transhumeral amputee with a myoelectric prosthesis. This
subject had a reduced range of motion for joints primarily on his prosthetic side. Shoulder
protraction and elevation (P4-5), upper arm flexion, abduction, and rotation (P7-9), as
well as wrist flexion and abduction (P13-14), all had decreased range of motion relative
to controls and the contralateral side. Forearm rotation of the prosthesis had continuous

motion; therefore there was no limit on the RoM of joint P12. However, forearm rotation
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was the only means of positioning the gripper relative to the forearm. The RoM of subject

HO3 relative to control averages is given in Figure 21.
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Figure 21: RoM of subject HO3 (blue) superimposed over control RoM (red)

4.3 Activities of Daily Living Results and Observations

The range of motion and qualitative observations of subjects performing the activities of
daily living is discussed in this section. Difficulties and solutions to obstacles associated
with each task are also presented. The compensatory motion is defined as the excessive
motion of a proximal joint to compensate for the limited motion of a distal joint. The use
of motion analysis for the detection of compensatory motions has been established for the
upper body [29, 99]. Compensatory motion is categorized by a significant increase
(p<0.05) in RoM of the proximal limb, and a significant decrease (p<0.05) in RoM of the
distal limb. Compensatory motion can be seen in all of the ADLs evaluated in this study,

except the lifting the laundry basket task.
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4.3.1 Brushing Hair

The braced subjects had a significantly increased RoM for scapular rotation (joint D6)
and a significantly decreased RoM for elbow flexion, forearm pronation, and wrist
flexion (joints D10, D12, and D13). For amputee subjects, the most frequently observed
difficulty with the grooming task involved the acquisition of the brush. Most amputee
subjects had to start with the brush in hand or transfer the brush to the prosthesis with
their contralateral limb. Some subjects, primarily within the transhumeral group, had
difficulty abducting their arm sufficiently to raise the brush to the top and back of their
head. Primary compensation strategy for amputees seems to involve increased motion of
scapular evaluation and protraction. Figure 22 show the range of motion of the un-braced

and braced control subjects respectively.
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Figure 22: Impact of bracing on dominant arm for brushing task
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4.3.2 Drinking From a Cup

For the drinking task, the braced subjects showed a significant increase in torso rotation,

scapular rotation, and upperarm rotation (joints 3, D6, and D9). However, the range of

motion of the torso for both braced and un-braced subjects is small for this task. There

was also a significant decrease in the RoM of forearm pronation, wrist flexion, and wrist

abduction (joints D12-14). This task was easily completed by the majority of the subjects.

However some subjects did not bring the cup entirely to the mouth. Subjects with high

level transhumeral amputations were the most likely to have difficulty with this task.

Since an empty cup was used there is potential for the subjects to be able to complete the

task in the lab while still having difficulty in everyday situations. The RoMs of the braced

and un-braced control subjects for drinking are given in Figure 23.
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Figure 23: Impact of bracing on dominant arm for drinking task
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4.3.3 Eating With a Knife and Fork

For this task there was a significant increase in the RoM for torso rotation, scapular

abduction, scapular elevation, scapular rotation, upperarm abduction, and upperarm

rotation (3, D4-6, D8-9) of the dominant / braced side, and in elbow flexion (N10) of the

non-dominant/un-braced side. The braced forearm pronation, wrist flexion and wrist

abduction (D12-14) showed a significant decrease in RoM. Similar to the brushing hair

task, the eating task often required the pre-positioning of the utensil prior to the subject

being able to complete the task. Unilateral amputees were able to position the utensils

using their contralateral limb; however the bilateral amputee received help primarily to

preserve time between task collections. Since this was a bilateral task the range of motion

of all joints is given in Figure 24 for braced and un-braced subjects.
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Figure 24: Impact of bracing on dominant and non-dominant arm for eating task
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4.3.4 Lifting a Laundry Basket

There was no significant increase in RoM for braced subjects performing the lifting task.
A significant decrease in upper arm abduction, elbow flexion, forearm pronation, wrist
flexion, and wrist abduction for the braced / dominant arm (D8, D10, and D12-14) was
observed. The laundry basket lifting task presented a greater challenge to users fitted with
electrically controlled prosthesis. They tended to have to open and close the prosthesis
after positioning their hand near the handles of the basket, and in one case had great
difficulty controlling the prosthesis while bent over. This is possibly due to the control
sensor not contacting the subject’s arm properly in that position. Body-powered
prosthesis users would pre-position their terminal device before performing the task and
would either simply hooked the handles or were able to open their gripper while bending
to grab the basket. This task required the greatest sum of joint angle RoM to complete.

The RoM of un-braced and braced subjects for the lifting task is given in Figure 25.
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Figure 25: Impact of bracing on dominant and non-dominant arm for lifting task
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4.3.5 Opening a Door

Significant increases in the RoM of torso flexion, torso lateral flexion, scapular rotation,
and upper arm rotation (joints 1, 2, D6, and D9) were observed for braced subjects during
the door opening task. Significant decreases in elbow flexion, forearm pronation, and
wrist flexion (joints D10, and D12-13) were also observed for the braced subjects. The
positioning of the door made recording the task somewhat difficult and marker dropout
was common. To increase visibility the superior section of the door was removed just
above the second hinge. For subjects who were unable to open the door with a traditional
round knob, a secondary lever handle was prepared. Only one subject required the lever

handle to open the door. The RoM of un-braced and braced subjects performing the

opening task is given in Figure 26.
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Figure 26: Impact of bracing on dominant arm for opening task
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4.4 Subject Measurements

Recorded measurements for control subjects are given in Table 16. For this study, only
small variances in the upper arm lengths were observed between subjects. Since these
measurements were recorded manually there was a £1cm margin of error, which may
account for left-right asymmetry.

Table 16: Control subject anthropometric measurements (cm)
Subject CC UCP UCD FC SC A2E X2E E2S E2T S2T

oy Right o~ 28 22 20 16 29 21 2 39 13
Left 27 22 22 16 31 22 26 39 13

cop RiGht o, 34 27 26 17 32 24 21 40 14
Left 30 27 25 16 33 23 27 40 14

cos Right o 39 20 30 18 30 23 28 40 13
Left 3% 30 28 19 29 26 27 39 12

cos RiGht o 35 27 27 17 32 24 21 40 14
Left 32 26 27 16 32 22 27 41 15
Right 40 34 33 19 31 24 27 41 13

CO5 %t 2 41 35 31 19 33 22 28 41 14
Right 3% 30 30 19 32 25 27 40 12
CO6 "%t 198 35 30 29 19 34 23 28 41 13
co7 Right oo 31 26 25 16 28 18 23 33 11
Left 32 26 23 15 28 19 23 34 12

cg ROt oo 31 30 28 17 31 22 26 39 14
Left 32 20 26 17 31 23 26 39 14
Right 3 30 20 18 32 23 28 39 14

CO9 Vet 107 39 29 28 17 31 23 27 38 14
cio Right o, 20 26 23 16 31 21 25 37 14
Left 31 25 22 15 31 21 26 37 13

Avg. 100 34 28 26 17 31 22 26 39 13
S.D. 70 41 32 33 13 17 19 14 22 09

*Descriptions for anatomical measurements are given in Table 6
The amputees included in this study varied considerably in residual limb anthropometry.
Residual limb measurements collected from the amputee subjects are given in Table 17.
Subject HO1 was a bilateral amputee, so measurement for the right and left residual limb
are included. Subject HO3’s residual limb was so short that only one practical

measurement of residual limb circumference could be obtained.
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Table 17: Amputee subject residual limb measurements (cm)

Subject PRLC DRLC A2RL X2RL E2RL
ROL _ Right - : - - 23.2
Right 32 28 13 7 i
R 265 17 8 i
HO2  Right 31 20 26 18 i
HO3  Right 26 i 12 4 i

4.5 Functional Joint Center Segment Geometry

The torso joint center is given relative to the pelvis segment. The shoulder joint center is

given relative to the torso segment. The shoulder, upper arm, and forearm segment

lengths are the distance between joint centers, since the joint centers are defined along the

Z-axis of the proximal segments. The values for the segment parameters are given in

Table 18 and were found with the functional joint center method, described in Chapter 3:.
Table 18: Segment geometry parameters from function joint centers (cm)

Torso Joint Center  Shoulder Joint Center  Segment Length
X Y Z X Y Z SHO UA FA

o W0 w0 P B o7 BT B
o o w2 0 B o B o® o
o W o @ oo 1 B T Mm@
o W5 w1 ¥ bomom
Sl ER A
oo W n oo 0 X 0 M om @
a6 v oa Lo 0 5 2
o W s oo 1 2o 2 o2 om
o W u o o 8 B C B 2 @
I

Avg. 10 11 0 1 30 7 13 25 26

S.D. 3 4 1 1 4 1 1 2 2
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In order to facilitate the implementation of the RHBM for subjects who have not
completed the RoM motion capture, the segment lengths and joint center locations were
correlated to the measured subject’s limb lengths using the Pearson product moment
correlation, or R? value in Microsoft Excel. Data from the right and left side were used in
a single correlation since the relations between anatomical measures and segment lengths
were assumed to be symmetrical. The correlations found are given in Table 19. Most
anatomical measures had a low correlation relative to the calculated segment lengths.

Table 19: R? correlations for segment lengths
Torso Center Shoulder Center Segment Lengths

X Y Z X Y Z Sho. UPA FA
Height 0.18 0.74* 023 000 -0.17 039 0.76* 0.62 0.91*
CC 000 037 014 -028 -027 036 061 -0.19 0.51
ucp 014 036 021 -019 -015 042 068 -0.02 0.62
ucb -010 045 -003 004 -043* 026 069 000 061
FC 002 054 010 -008 -027 034 069 010 0.72
SC 009 058 031 -004 -025 034 075 040 0.75
A2E 047 032 033 -027* 015 048 043 039 0.64
X2E 036 046 034 -007 000 034 056 070 0.78
E2S 058 041 043* -019 010 041 065 068 0.88
E2T 036 064 022 001 -006 031 070 0.71* 0.89
S2T 041 022 -018 0.02 -0.05 006 031 037 051

*Values represent highest correlation for the given model length.

To increase the accuracy and reliability for use in future studies, the measured lengths
were then used in a multivariable liner regression in order to more accurately determine
the segment lengths in relation to manual measurements. The regression was also forced
to a zero intercept to increase the stability of the solution given the inclusion / exclusion
of subjects. The subject height and chest circumference, CC, were used to estimate the
torso center, shoulder center, and shoulder length. The distance from the acromion to
lateral epicondyle of the humerus, A2E, and the distance from the axilla to the elbow to

the medial humeral epicondyle, X2E, was used to generate the upper arm length, UPA.
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The distance from the lateral epicondyle to the radial styloid process, E2S, and to the
thumb, E2T, was used to generate the forearm length, FA. The RHBM parameters were
obtained from the functional joint center methods, but can also be entered manually from
calculations based on the height of the subject or from the anthropometric correlations
given in Eqg. 21 through Eqg. 30. Any units can be used in the following equations;
however, the same units must be used for all measurements. The torso joint center in Z-
axis direction and shoulder joint center in X-axis direction were set to zero because the

subject variation was larger than the average value.

Eq. 21 Torso JC(X) = —0.0389 « CC + 0.0791 = Height
Eq. 22 TorsoJC(Y) = —0.0602 x CC + 0.0949 ~ Height
Eqg. 23 TorsoJC(Z) = 0

Eq. 24 Shoulder JC(X) = 0

Eq. 25 Shoulder JC(Y) = —0.0632 = CC + 0.2029 = Height

EqQ. 26 Shoulder JC(Z)gigne = —0.241+ CC + 0.540 « Height

Eq. 27 Shoulder JC(Z)efe = 0.241 % CC — 0.540 « Height
Eqg. 28 Shoulder Length = 0.0479 «x CC + 0.0457 x Height
Eq. 29 Upper Arm Length = 0.654 * X2E + 0.350 « A2E
Eqg. 30 Forarm Length = 0.434 x E2T + 0.365 x E2S

The accuracy of the RHBM reconstruction with RoM data relative to the recorded
segment locations, using the functional joint centers as segment origins, is very high with
the average end effector reconstruction error of less than 1mm. Using the anthropometric
correlations, the model accuracy decreases to an average error of 26 mm for the tested

subjects. Using literature average segment length relative to height, for a 50" percentile
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male [63], results in an average error of approximately 164 mm for the tested subjects.
The reconstruction error using literate averages for the height ratio is somewhat
exaggerated. Since RHBM was designed to use the functional joint center data, which
orients the segments based to align the joint center, and the literature data were given

relative to surface landmarks.

4.6 Comparison with Vicon Plug-In Gait

To help validate the clinical relevance of the joint angles calculated by the functional
joint center based model, the joint angles were compared to the joint angles calculated
using the Vicon Plug-in Gait [54]. The Plug-in Gait is a commonly used program for
motion analysis studies. Therefore, using similar conventions will allow for comparison
of the RHBM outputs to existing studies. To facilitate the comparison, subject CO1 was
fitted with a 29 marker upper body marker set that contained the standard marker set for
the upper body portion of the Plug-in Gait and the markers required for the functional
joint center algorithm. Anthropometric measurements required for the Plug-in Gait were
recorded by hand using a standard tape measure prior to motion analysis. The subject
completed the same eight RoM tasks as specified in Section 2.5. The raw position data
were filtered with a weighted moving average digital filter. The Plug-in Gait algorithm
was used to find torso, shoulder, elbow, and wrist angles within the Vicon Bodybuilder
software. Matlab was used to find the functional joint centers and to define the upper
body segments based on joint center and marker positions, as defined in Section 3.2. The
rotational conventions defined in the Plug-in Gait manual were then used to find the joint
angles given the RHBM segments. The difference in joint angles was a function of the

difference between the segment definitions in the Plug-in Gait and functional joint center
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methods. After analyzing the Plug-in Gait coordinate systems, the conventions of the
RHBM segments were adapted to match by re-defining the axes and rotational orders.
The transformation of joint angles from the RHBM convention to the Plug-in Gait
convention was achieved by using the same joint rotation conventions as established in
the Plug-in Gait as a post-hoc analysis of the segment rotational matrices after all of the
segments were defined. The distances between the segment origins of the Plug-in Gait
were also analyzed. Variation of the distances between segments, or segment lengths,
leads to error between motion reconstructions and recorded data when implementing the

data in a rigid body model such as the RHBM.

The functional joint center algorithm was able to generate accurate joint centers for the
upper body segments of all 10 control subjects, resulting in average position
reconstruction error of less than 1mm between the forward kinematics of the RHBM and
the hand segment locations [100]. The average difference between the joint angles of the
Plug-in Gait and the functional joint center methods for each joint is presented in Table
20. The angles calculated from the functional joint center method closely matched the
Plug-in Gait for all joints except for the wrist. The hand and forearm segments were
defined differently between the two models, primarily due to the conventional differences
caused by assumptions for elbow motion. The average difference for all joints except the
wrist was 6.0 £3.1°. The wrist had a much larger average difference of 39.9°.

Table 20: Average difference between joint angle conventions (degrees)
Torso Left Shoulder Right Shoulder Elbow Flex Wrist Pron

Flex LatF Rota Flex Abdu Rota Flex Abdu Rota Left Right Left Right
33 14 38 93 118 101 84 52 45 68 51 28 53

Figure 27 shows left elbow flexion for the elbow flexion task using the functional joint

center and the Plug-in Gait methods. The component rotations of a joint were coupled,
74

www.manaraa.com



therefore a difference in one rotation (i.e. shoulder flexion) will result in differences for
all rotations associated with that segment (i.e. shoulder abduction & rotation). This is the
typical form of the difference between methods which is caused by the difference in
segment orientation. The axes were similar in orientation but not exact since they used
different markers in the segment definition. The error was somewhat systemic, usually

consisting of an offset as a function of the joint angles of the associated segments.
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Figure 27: Left elbow flexion for functional joint center and Plug-in Gait.

To find the variation in segment lengths of the Plug-in Gait model, the distances between
segment origins of the torso, clavicle, humerus, radius, and hand segments were found.
The mean, standard deviation, minimum, and maximum distance between the segments
origins are presented in Table 21. The variations in segment lengths were normally small,
but in extreme ranges of motion the variation can become large.

Table 21: Variation in Plug-in Gait segment lengths for RoM tasks (mm)
TRXto RCLto RHUto RRAto TRXto CLCL LHUto LRAto
RCL RHU RRA RHN LCL toLHU LRA LHN
Mean 184 284 261 177 188 284 267 154
S.D. 11 12 9 30 9 11 9 10
Min 142 198 171 127 136 205 186 98
Max 210 321 269 533 238 324 276 200

Investigation of the source of highest variation and joint angle error seems to occur
primarily in instances where the Plug-in Gait behaves abnormally. The exact cause was

unknown as the calculations of the Plug-in Gait are proprietary, but the error may be
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partially caused by interpolation during instances of marker dropout. Figure 28 shows an
example of a trial with abnormally high error caused by marker dropout. Although most
trials did not contain significant marker dropout, all points where both models calculated

segment kinematics were used.
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Figure 28: Plug-in Gait abnormality and associated variation in segment length
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Chapter 5: Methods for Predicting Human Motion

In this chapter the formulations of the least norm (LN), weighted least norm (WLN),
probability density gradient projection of the null space (GP), and artificial neural
network (NN) methods for reconstructing human motion are presented. This study was
developed to increase the accuracy and realism of upper body simulations and to make
the results easily verifiable. Other studies have been done to predict upper-limb motion
but they often restrict the origin of the simulation to the shoulder joint and therefore lack
the necessary complexity to predict compensatory motions [43, 45]. The kinematics of
the human upper body are highly redundant. There are an infinite number of
configurations in joint angle space that can produce the same position and orientation of
the hand in Cartesian space. Therefore, there are an infinite number of solutions to the
inverse kinematics of the upper body. The range of solutions that are human-like is
smaller than the total number of possible solutions. To maintain a human pose it is
necessary to find joint angles that not only satisfy the kinematic constraints, but also are
realistic human poses. This challenge has been the subject of study in a variety of fields,
and several solutions have been presented [12, 15, 16, 43, 101-103]. However the task of
predicting motion of prostheses users possesses unique challenges. The kinematics of an
upper limb amputee is dependent on the RoM of their prosthesis, their ability to utilize
that prosthesis, and the RoM of their body including that of the residual limb. When
predicting the movement of the upper body for prosthesis simulation, the functional

capabilities of individual and of the prosthetic device must be considered.
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To properly predict the motion of an upper limb prosthesis user, a highly adaptable
control algorithm must be selected. The model must consider the user, the prosthesis, and
the task. To select the best algorithms several techniques for the inverse kinematic control
of the upper body model were evaluated and the technique that produced the best results
was selected for use in the simulation. Results of the individual control methodologies
were analyzed for potential integration of methods, and the robustness of each control

algorithm was also evaluated by varying the number subjects used to train the algorithms.

5.1 Training Data Filtering and Preprocessing

TrainBi.m, Appendix B.16, compiles the data from motion analysis into the form used in
the training and testing algorithms. Gaps in the joint angle data are filled with FilGap.m,
Appendix B.17. Any trials with more than a total of one second of gaps, are segmented
into smaller sections that have no gaps. In order to include data from all of the subjects it
was necessary to condense the number of points in the training set. If we consider the
braced subjects to be additional subjects, there are 24 subject data sets. Each subject
performs 5 ADLs, each ADL is repeated 3 times, the model has 25 DoFs, and most trials
are approximately 3 seconds long, with 120 points for each joint per second. This led to
approximately 3.2 million pieces of data that could be used for training. To decrease the
amount of time required to train and test the various control algorithms the amount of
data were reduced. To facilitate reduction of the number of training points the
condense.m, Appendix B.18, algorithm was used to effectively reduce the sampling rate
of the data collected, from 120 Hz to 20 Hz, by replacing every 6 data points in the time

series with an average of the data points for that series.
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5.2 Defining Error

For this study the accuracy of each method was defined as being inversely related to the
error of the predicted joint angles. The error of each method was defined by the joint
square error, Eq. 31, or the root mean squared (RMS) error, Eq. 32, of the predicted joint
angles, Oy, relative to the recorded joint angles from the motion analysis data, ©,,,,
where N is the number of points in the reported error. This operation can be calculated on
a model or joint basis, or on a model basis, the error squared is the mean of the joint
angle error squared.

Eg. 31 ErrorSquared = (0, — 0x)*

Eq. 32 RMSerror = \/@

The error is reported several ways:
1. Dynamic error: the error squared for every instance of a trial.
2. Trial error: the RMS error of a single trial. This is equal to the square root of the
sum of the dynamic error divided by the number of points in a trial.
3. Subject error: the RMS error for a specific subject. This is equal to the square root
of the mean of trial error squared for all trials performed by the subject.
4. Task error: the RMS error for a specific task. This is the square root of the mean
error of trial error squared for all trials associated with a specific task.
5. Global error: the RMS error for all tasks and subjects. This is equal to the root
mean of the trial error squared for all trials.
The error squared was calculated in radians in each of the algorithm testing functions,
and the trial, subject, task, and global RMS error on both joint and model basis were
calculated and converted into degrees in the CompileError.m function, Appendix B.15.
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5.3 Robustness of Methods

In addition to the accuracy of the selected methods, their robustness was also an
important consideration. The robustness is the ability of the model to accurately predict
the pose of an individual who was not part of the training data. The robustness was a
significant part of the analyses because the purpose of the RHBM is to predict human
motion to decrease the need for direct observation. To test the robustness of each method,
subjects were excluded from the training set associated with each method. Data included
in the training is referred to as the included data set and data that is excluded is referred to
as the excluded data. The error is then calculated for all data. Initially only subject CO1
was in the included data set, then subjects C02-C10 are transferred to the included set and
the accuracy re-evaluated until all subjects’ data have been added to the included data set.
The data distribution for the robustness test number is illustrated in Table 22.

Table 22: Data distribution for robustness testing
Robustness Test Number
1 2 3 4 5 6 7 8 9 10
C01 CO01 Col1 CO01 C01 CO01 co1 co1 co1co1
C02 C02 C02 C02 C02 C02 C02 CO02 CO02 Co02
C03 C03 C03 C03 C03 C03 C03 CO03 Co03 co3
C04 C04 C04 C04 CO4 C04 CO04 CO04 C04 Co4
C05 CO05 C05 CO05 €05 CO05 C05 CO05 CO05 C05 —
C06 CO06 C06 CO6 CO6 CO06 CO6 CO6 C06 C06
C07 CO07 C07 CO07 CO7 CO07 CO7 CO7 CO7 Co7
C08 C08 C08 C08 C08 C08 C08 €08 CO08 C08
C09 C09 C09 C09 CO09 C09 CO09 CO09 CO09 C09
C10 C10 C10 C10 C10 C10 C10 C10 C10 C10

Data

Excluded Data
Include

The rate of convergence, calculated by the extrapolation of data onto a logarithmic
function, of the included and excluded set error approximates the robustness of the
method. All methods that are stable will eventually converge at a point where the

addition of data from the excluded set to the included set has an insignificant impact on
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the error associated with each set. However the number of subjects required to achieve
convergence may be very large. In a robust method, the included and excluded subjects’
average error will converge quickly. The error and number of subjects required was the
primary consideration when evaluating the differences between methods and selecting the

optimal method for this study.

5.4 Least Norm Solution (LN)

For this study the least norm solution, ©,,, was used as a baseline to compare the
performance of the various control algorithms and to serve as a reference for making
qualitative assessments of motion. The least norm method uses the pseudo inverse of the
Jacobian to find the mapping between end effector Cartesian velocity and joint angle
velocity; this can be used to find an inverse kinematics solution by finding the difference

between the forward kinematic solution and the desired end effector position.

For the RHBM, x was a 12 by 1 vector containing the Cartesian position and orientation
of the right and left end effectors respectively, and 6 represents the 1 by 25 joint angle
vectors. The torso was represented by the first three joints of both the right and left arm
models. The Jacobian is the mapping between the joint angle velocity, 8, and the end
effector velocity and rotation in Cartesian space, x. Composition of the bilateral Jacobian,
J, from the Jacobians of the right and left arms, J and J, respectively, and the forward
kinematic equation is given in Eq. 33. The least norm solution, 8, , to inverse kinematics
is given in Eq. 35, as described by the pseudo inverse of the Jacobian in Eq. 34. The first

three joints of the right and left arm represent the movement of the torso and are shared
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by both arms. The joint angles for joints 4-14 of the left and right arm are independent in

the forward kinematic equation, but are dependent in the inverse kinematic solution.

. 9R&L1—3
. XR ; Jr1-3 JRa-14 0 :
Eq. 33 — [ ]= o = [I
d * Xy J 11-3 0 J1a-14 QR
L
Eq. 34 JF =gt
Eq 35 BLN =]+x

In this formulation both arms can move simultaneously but the movements of the arms
are coupled. If the left hand moves and the right hand’s position and orientation remains
static, the joint angles of the right arm will have to change as well to accommodate the
movement of the torso. Given a series of end effector positions and orientations, the
corresponding joint angles were calculated by solving for each step in an iterative time
series. Due to the non-linearity of the equations, error was introduced based on the size of
the step between end effector trajectory points. In this application, this error was small
due to the 20Hz effective frame rate and slow movement during the ADLs. However,
error was prevented from accumulating by using the forward kinematics of the current
position at each iteration when calculating the end effector difference. The formula for
the iterative least norm solution is given in Eq. 36. Where 6; is the current joint angle
vector at iteration i, x;, is the desired end effector position and orientation, fkine(6;) is
the current end effector position and orientation as determined by the forward kinematics
of the RHBM, and 6, is the joint angle vector correlating to the desired end effector
position.

Eq. 36 0i11 = 0; + ] (x341 — fkine(0)))

82

www.manaraa.com



This method is referred to as the least norm solution because it produces the solution to

the inverse kinematics that minimizes the norm or the joint angular velocity, Eq. 37.
VOT

The function testBiLN.m, Appendix B.19, was used to test the least norm solution and

Eq. 37 |(9|LN

calculate the error squared relative to the recorded joint angles from motion analysis.

5.5 Weighted Least Norm (WLN)
Based on the work by Chan and Dubey [73], the relative motion of joints can be

penalized by adding a weighting term to the joint angle velocity norm, Eq. 38.

Eq. 38 6l,,, =voTwe
Where W is a symmetric positive definite weighting matrix of size n by n, where n is the

number of joints of the robot. For analysis, the weighted Jacobian and weighted joint

angle velocity were defined as the following.

1 . 1,
Eq. 39 Jw=JW =z and 6, =Wz20
By substituting Eq. 39 into Eg. 33 and Eq. 38, the forward kinematics, Eq. 40, and

weighted least norm, Eq. 41, equations can be verified.
: 11, :
Eq. 40 x= JywOyw = JW 2W20 = JO

07,6, =\ oTW

Eq. 41 6], =

The inverse of Eq. 40 can then be written as Eq. 42.
Eq. 42 Ow = Jiyx
The WLN solution can then be obtained by removing the weights from the angular

velocity vector, Eq. 43.
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Eq. 43 Owin = w%éw = W‘%ﬁ,,x

Eq. 43 can then be expanded through the definition of the pseudo inverse to become Eq.
44, resulting in the weighted least norm as a function of the inverse weights.

Eq. 44 Oy = W TW %

This can be used in an iterative manner similar to the least norm solution, as in Eq. 45.
Eq. 45 ;11 = 0; + W T[JW=YT] * (xi41 — fkine(8,))

For this study the weights were extracted from the motion analysis data so that they can
be used to calculate the joint velocities in a simulation where they are unknown. Since
there is no known closed form solution to directly calculate the weights, the first attempt
to approximate the joint weight was to find the relative motion of each joint to the least
norm solution of that joint for each instance in time Eq. 46.

Eq. 46 W= 0y,/0.x

However this method often produces a less desirable motion, likely due to the non-
linearity, and interdependence of the weighted least norm solution. A linear change in
weight has a non-linear change in joint angle, and changing the weight of one joint
affects the change in joint angle of all joints. To determine the best set of joint weights
the optimization toolkit in Matlab was used. The fmincon function is called to minimize
the error of the weighted least norm solution by varying the values of, W =1, which finds
the appropriate weights to make the weighted least norm solution match the recorded
joint angle velocity for every step in the trial. It is important to note that this method
directly solves for the elements of the inverse of the weighting matrix on the range of
0.001 to 1, this is done to prevent the necessity of taking the extra step to invert the

weighting matrix, W, in the optimization algorithm since it requires that the error
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function be called many times. The weighting matrix is defined as a positive definite
matrix [73], and the values are relative, so the lower bound of the inverse matrix must be
greater than 0, and modification of the upper bound has a small impact on the results. The
initial guess for the elements of the inverse of the weighting matrix were set to 0.5, which
was chosen because it is the midpoint of the selected bounds, and the weights are all

relative so any number can be used as the initial weight.

To evaluate the data completely the optimization was performed at several levels. First
the weights were extracted at every point in the data series, and are referred to as the
dynamic weights. The dynamic weights were evaluated on a constrained and an
unconstrained basis. The constrained optimization added coefficients B and A to limit the
rate of change of the joint weights, and the distance from the initial guess for the joint
weights respectively Eq. 47. This decreases the variation of the extracted joint weights.
EQ. 47 Cost= ) ((QWLN(W) - @MA)Z + A Winiiar — W)° + B * (Wprevious — W)z)
The constrained and unconstrained dynamic weight optimization and testing was
performed with TestBiWLN_Dyn.m, Appendix B.20, which allows for different weights
at each instance of every trial. Then the weights were optimized for each trial, using one
set of weights for each trial, producing the static weights using TestBiWLN_Sta.m,
Appendix B.21. Weights were then optimized using one set of weights for each subject to
form the subject weights, TestBiWLN_Sub.m, Appendix B.22, and then one set of weights
for each task to form the task weights, TestBiIWLN_Tas.m, Appendix B.23. Finally a
sing